Statistics: A Primer

Lecture BigData Analytics

Julian M. Kunkel

julian.kunkel@googlemail.com

University of Hamburg / German Climate Computing Center (DKRZ)

2016-10-28

Disclaimer: Big Data software is constantly updated, code samples may be outdated.

Distribution of Values

Inductive Statistics

Outline

1 Descriptive Statistics

- 2 Distribution of Values
- 3 Inductive Statistics

4 Summary

Statistics: Overview

Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data [21]

Either **describe** properties of a sample or **infer** properties of a population

Important terms [10]

- **Unit of observation**: the entity described by the data
- **Unit of analysis**: the major entity that is being analyzed
 - Example: Observe income of each person, analyse differences of countries
- Statistical population: Complete set of items that share at least one property that is subject of analysis
 - Subpopulation share additional properties
- **Sample**: (sub)set of data collected and/or selected from a population
 - If chosen properly, they can represent the population
 - There are many sampling methods, we can never capture ALL items
- Independence: one observation does not effect another
 - Example: select two people living in Germany randomly
 - Dependent: select one household and pick a married couple

Statistics: Variables

- **Dependent variable**: represents the output/effect
 - Example: word count of a Wikipedia article; income of people
- Independent variable: assumed input/cause/explanation
 - Example: number of sentences; age, educational level

Characterization

- Univariate analysis: characterize a single variable
- **Bivariate analysis**: describes/analyze relationships between two vars
- Multivariate statistics: analyze/observe multiple dependent variables
 - Example: chemicals in the blood stream of people or chance for cancers, Independent variables are personal information/habits

- The discipline of quantitatively describing main features of sampled data
 - Summarize observations/selected samples
- Exploratory data analysis (EDA): approach for inspecting data
 - Using different chart types, e.g., box plots, histograms, scatter plot
- Methods for univariate analysis
 - Distribution of values, e.g., mean, variance, quantiles
 - Probability distribution and density
 - t-test (e.g., check if data is t-distributed)
- Methods for bivariate analysis
 - Correlation coefficient¹ describes linear relationship
 - Rank correlation²: extent by which one variable increases with another var
- Methods for multivariate analysis
 - Principal component analysis (PCA) converts correlated variables into linearly uncorrelated variables called principal components

¹Pearson's product-moment coefficient

²By Spearman or Kendall

Descriptive Statistics

Distribution of Value

Inductive Statistics

Example Dataset: Iris Flower Data Set

- Contains information about iris flower
- Three species: Iris Setosa, Iris Virginica, Iris Versicolor
- Data: Sepal.length, Sepal.width, Petal.length, Petal.width

R plot of the iris data

Distribution of Values: Histograms [10]

- Distribution: frequency of outcomes (values) in a sample
 - Example: Species in the Iris data set
 - setosa: 50
 - versicolor: 50
 - virginica: 50
- Histogram: graphical representation of the distribution
 - Partition observed values into bins
 - Count number of occurrences in each bin
 - It is an estimate for the probability distribution

Histograms with 10 and 25 bins

Inductive Statistics

Distribution of Values: Density [10]

- Probability density function (density):
 - Likelihood for a continuous variable to take on a given value
 - Kernel density estimation (KDE) approximates the density

R example

```
1 # The kernel density estimator moves a function (kernel) in a window across samples
2 # With bw="SJ" or "nrd" it automatically determines the bandwidth, i.e., window size
3 d = density(iris$Petal.Length, bw="SJ", kernel="gaussian")
4 plot(d, main="")
```


Density estimation of Petal.Length

Distribution of Values: Quantiles [10]

- Percentile: value below which a given percentage of observations fall
- q-Quantiles: values that partition a ranked set into q equal sized subsets
- Quartiles: 3 data points that split a ranked set into 4 equal points
 - Q1=P(25), Q2=median=P(50), Q3=P(75), interquartile range iqr=Q3-Q1
- Five-number summary: (min, Q1, Q2, Q3, max)
- Boxplot: shows quartiles (Q1,Q2,Q3) and whiskers
 - Whiskers extend to values up to 1.5 iqr from Q1 and Q3
 - Outliers are outside of whiskers

R example

Inductive Statistics

Measures (linear) correlation between two variables

- Result is between -1 and +1
 - >0.7: strong positive correlation
 - >0.2: weak positive correlation
 - 0: no correlation, < 0: negative correlation

R example

```
library(corrplot)
   d = iris
3 d$Species = as.numeric(d$Species) # It is normally not
           → adviced to convert categorial data to numeric
   corrplot(cor(d), method = "circle") # the right plot
 4
 5
 6
   mplot = function(x, y, name)
 7
     pdf(name,width=5,height=5) # plot into a PDF
8
     p = cor(x,v, method="pearson") # compute correlation
 9
     k = cor(x, y, method="spearman")
10
     plot(x,y, xlab=sprintf("x\n cor. coeff: %.2f rank coef.:
             \hookrightarrow %.2f", p, k))
     dev.off()
12
   }
13
14
   mplot(iris$Petal.Length, iris$Petal.Width, "iris-corr.pdf")
   # cor coeff: 0 96 rank coef : 0 94
15
16
   x = 1:10; y = c(1,3,2,5,4,7,6,9,8,10)
17
   mplot(x.v. "linear.pdf") # cor. coeff: 0.95 rank coef.: 0.95
18
19
20 mplot(x, x*x*x , "x3.pdf") # cor. coeff: 0.93 rank coef.: 1
```


Correlations for x,y plots; Source: [22]

Distribution of Values

Inductive Statistics

1 Descriptive Statistics

- 2 Distribution of Values
- 3 Inductive Statistics
- 4 Summary

Distribution of Values

- Data exploration helps to understand distribution of values for a variable
- To illustrate data distribution, statistics uses:
 - Probability density function (PDF): value and probability; P(x)
 - Cumulative distribution function (CDF): sum from $-\infty$ to value; $P(X \le x)$
- Many standard distributions exists that can be models for processes
 - Discrete probability functions are drawn from a limited set of values
 - Continuous probability functions are $\in \mathbb{R}$
- When we explore data, we may identify these common distributions
- Discrete probability functions are derived from useful processes

Inductive Statistics

(Continuous) Uniform Distribution

- Notation: unif(a, b)
- Mean: $\frac{a+b}{2}$
- Variance: $\frac{(b-a)^2}{12}$

(a) Source: IkamusumeFan, PDF of the uniform probability distribution (10)

(b) Source: IkamusumeFan, CDF of the uniform probability distribution (10)

 $\mu + 2\sigma$

 $\mu + 3a$

- Notation: $\mathcal{N}(\mu, \sigma^2)$
- Mean: μ
- Variance: σ^2

Source: Dan Kernler, For the normal distribution, the values less than one standard deviation away from the mean account for 68.27% of the set; while two standard deviations from the mean account for 95.45%, and three standard deviations account for 99.73%. [10]

 $\mu - 3\sigma$ $\mu - 2\sigma$ $\mu - \sigma$

(a) Source: Inductiveload, Probability density (b) Source: Inductiveload, Cumulative function for the normal distribution (10) distribution function for the normal

Julian M. Kunkel

Descriptive Statistics

Distribution of Values

Inductive Statistics

Exponential Distribution

- Notation: Exponential(λ)
 - λ (rate) > 0
- Mean: λ^{-1}
- Variance: λ^{-2}

- Models inter-arrival time of a Poisson process
- Memoryless, useful to model failure rates

(C) Source: Skbkekas, Probability density function (10)

(d) Source: Skbkekas, Cumulative distribution (10)

Descriptive Statistics

Inductive Statistics

Gamma Distribution

- **Notation:** Gamma(α , β)
 - α (shape), β (rate) > 0
- Mean: $\frac{\alpha}{\beta}$
- Variance: $\frac{\alpha}{\beta^2}$

(e) MarkSweep and Cburnett, Probability density plots of gamma distributions (10)

(f) MarkSweep and Cburnett, Cumulative distribution plots of gamma distributions (10)

Real Data

Observations can be based on several (unknown) processes

Fraction of people of a given age that died in 1999

Mark Bailin, Mortality by age [10]

Distribution of Values	
000000	

Real Data (2)

Performance of reading 1 MiB of data from two different storage systems

Lustre parallel file systems vs. pooled memory of the XPD

- 1 Descriptive Statistics
- 2 Distribution of Values
- 3 Inductive Statistics
- 4 Summary

Inductive Statistics: Some Terminology [10]

- Statistical inference is the process of **deducting properties** of a population by analyzing samples
 - Build a statistical model and test the hypothesis if it applies
 - Allows to deduct propositions (statements about data properties)
- Statistical hypothesis: hypothesis that is testable on a process modeled via a set of random variables
- Statistical model: embodies a set of assumptions concerning the generation of the observed data, and similar data from a larger population. A model represents, often in considerably idealized form, the data-generating process
- Validation: process to verify that a model/hypothesis is likely to represent the observation/population
- Significance: a significant finding is one that is determined (statistically) to be very unlikely to happen by chance
- **Residual**: difference of observation and estimated/predicted value

Statistics: Inductive Statistics [10]

Testing process

- **1** Formulate default (null³) and alternative hypothesis
- 2 Formulate statistical assumptions, e.g., independence of variables
- **3** Decide which statistical tests can be applied to disprove null hypothesis
- 4 Choose significance level α for wrongly rejecting null hypothesis
- 5 Compute test results, especially the **p-value**⁴
- **6** If p-value $< \alpha$, then reject null hypothesis and go for alternative
 - Be careful: (p-value $\geq \alpha$) $\not\Rightarrow$ null hypothesis is true, though it may be

Example hypotheses

- Petal.Width of each iris flowers species follow a normal distribution
- Waiting time of a supermarket checkout queue is gamma distributed

³We try to reject/**null**ify this hypothesis.

⁴Probability of obtaining a result equal or more extreme than observed.

Distribution of Values

Inductive Statistics

Checking if Petal.Width is Normal Distributed

R example

```
# The Shapiro-Wilk-Test allows for testing if a population represented by a sample is normal distributed
   # The Null-hypothesis claims that data is normal distributed
 3
   # Let us check for the full population
 4
 5
   > shapiro.test(iris$Petal.Width)
   # W = 0.9018, p-value = 1.68e-08
 6
   # Value is almost 0. thus reject null hypothesis => in the full population. Petal.Width is not normal distributed
 8
   # Maybe the Petal.Width is normal distributed for individual species?
 q
   for (spec in levels(iris$Species)){
10
11
     print(spec)
12
     v = iris[iris$Species==spec.]
13
14
     # Shapiro-Wilk-test checks if data is normal distributed
15
     print(shapiro.test(v$Petal.Width))
16
   }
17
18 [1] "virginica"
19 W = 0.9598, p-value = 0.08695
20 # Small p-value means a low chance this happens, here about 8.7%
   # With the typical significance level of 0.05 Petal.Width is normal distributed
   # For simplicitly, we may now assume Petal.Width is normal distributed for this species
23
   [1] "setosa"
24
25
   W = 0.7998, p-value = 8.659e-07 # it is not normal distributed
26
27 [1] "versicolor"
28 W = 0.9476, p-value = 0.02728 # still too unlikely to be normal distributed
```

Linear Models (for Regression) [10]

- Linear regression: Modeling the relationship between dependent var Y and explanatory variables X_i
- Assume *n* samples are observed with their values in the tuples $(Y_i, X_{i1}, ..., X_{ip})$
 - Y_i is the dependent variable (label)
 - X_{ij} are independent variables
 - Assumption for linear models: normal distributed variables

A linear regression model fits $Y_i = c_0 + c_1 \cdot f_1(X_{i1}) + ... + c_p \cdot f_p(X_{ip}) + \epsilon_i$

- Determine coefficients c_0 to c_p to minimize the error term ϵ
- The functions f_i can be non-linear

R example

```
1 # R allows to define equations, here Petal.Width is our dependent var
2 m = lm("Petal.Width - Petal.Length + Sepal.Width", data=iris)
3
4 print(m) # print coefficients
5 # (Intercept) Petal.Length Sepal.Width
6 # -0.7065 0.4263 0.0994
7 # So Petal.Width = -0.7065 + 0.4263 * Petal.Length + 0.0994 * Sepal.Width
```



```
3
   # Add prediction to our data frame
 4
 5
   iris$prediction = d
 6
 7
   # Plot the differences
 8
   plot(iris$Petal.Width, col="black")
9
   points(iris$prediction, col=rqb(1,0,0,alpha=0.8))
10
11
   # Sort observations
12
   d = iris[sort(iris$Petal.Width, index.return=TRUE)$ix,]
   plot(d$Petal.Width. col="black")
13
   points(d$prediction, col=rqb(1,0,0,alpha=0.8))
14
```

- Std. error of the estimate: variability of *c*_i, should be lower than *c*_i
- t-value: measures how useful a variable is for the model
- Pr(>|t|) two-sided p-value: probability that the variable is not significant
- Degrees of freedom: number of independent samples (avoid overfitting!)
- R-squared: fraction of variance explained by the model, 1 is optimal
- F-statistic: the f-test analyses the model goodness high value is good

```
summary(m) # Provide detailed information about the model
   # Residuals:
 3
          Min
                    10
                       Median
                                     30
                                             Max
   # -0.53907 -0.11443 -0.01447 0.12168 0.65419
 4
 5
   #
   # Coefficients:
   #
                  Estimate Std.Error t value Pr(>|t|)
8
   # (Intercept) -0.70648 0.15133 -4.668
                                              6.78e-06 ***
 9
   # Petal.Length 0.42627
                            0.01045 40.804
                                               < 2e-16 ***
10 # Sepal.Width 0.09940
                            0.04231
                                     2.349
                                                0.0201 *
11|
12 # Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 " " 1
13
14 # Residual standard error: 0.2034 on 147 degrees of freedom
15 # Multiple R-squared: 0.9297, Adjusted R-squared: 0.9288
16 # F-statistic: 972.7 on 2 and 147 DF. p-value: < 2.2e-16
```

- Akaike's Information Criterion (AIC)
- Idea: prefer accurate models with smaller number of parameters
- Test various models to reduce AIC
- Improve good candidates
- AIC allows to check which models can be excluded

Time Series

- A time series is a sequence of observations
 - e.g., temperature, or stock price over time
 - Prediction of the future behavior is of high interest
- An observation may depend on any previous observation
 - Trend: tendency in the data
 - Seasonality: periodic variation

Prediction models

- Autoregressive models: AR(p)
 - Depend linearly on last p values (+ white noise)
- Moving average models: MA(q)
 - Random shocks: Depend linearly on last q white noise terms (+ white noise)
- Autoregressive moving average (ARMA) models
 - Combine AR and MA models
- Autoregressive integrated moving average: ARIMA(p, d, q)
 - Combines AR, MA and differencing (seasonal) models

Descriptive Statistics

Distribution of Value

Inductive Statistics

Example Time Series

Temperature in Hamburg every day at 12:00 Three years of data (1980, 1996, 2014)

```
d = read.csv("temp-hamburg.csv", header=TRUE)
   d$Lat = NULL: d$Lon = NULL
   colnames(d) = c("h", "t")
   d$t = d$t - 273.15 # convert degree Kelvin to
           ↔ Celcius
 5
   plot(d$t, xlab="day", ylab="Temperature in C")
   pdf("hamburg-temp-models.pdf", width=5, height=5)
 8
   plot(d$t, xlab="day", ylab="Temperature in C")
 q
   # Enumerate values
10
11
   d$index=1:nrow(d)
12
   # General trend
14
   m = lm("t ~ index", data=d)
   points(predict(m, d), col="areen")
15
16
17
   # Summer/Winter model per day of the year
   d$day=c(rep(c(1:183, 182:1),3),0)
18
   m = lm("t ~ day + index", data=d)
19
20
   points(predict(m, d), col="blue"):
21
22 library(forecast)
23
   # Convert data to a time series
   ts = ts(d$t, frequency = 365, start = c(1980, 1))
24
   # Apply a model for non-seasonal data on
           → seasonal adjusted data
   tsmod = stlm(ts, modelfunction=ar)
261
   plot(forecast(tsmod, h=365))
```


Descriptive Statistics

Distribution of Values

Inductive Statistics

Linear models for trend & winter/summer cycle

Using the forecast package/stlm()

Lag operator returns the previous element ($LX_t = X_{t-1}$) [4]

Modeling Spatial Data

- Assume we measure data (z) on a surface (x,y), e.g., oil reservoirs
- Kridging: "methods are statistical estimation algorithms that curve-fit known point data to produce a predictive surface" [2, p.116]
- Variogram: variance between (x,y) pairs depending on the distance

Stations and their observed ozone values

Estimated variogram with bins. A distance > red line, only green stations are compared

Models: linear, exponential, Gaussian, spherical

Spherical model

Spherical model prediction and actual variance

Distribution of Values

Inductive Statistics

Summary

- Statistics allows us to describe propertiers and infer properties
 - Sample: subset of data
 - Population: complete set of items that is subject to analysis
 - Independent vs. dependent variables
- Descriptive statistics helps analyzing samples
 - Univariate: 5-number summary, quantiles, histograms, boxplots, density
 - Bivariate: correlation of two variables
- Inductive statistics provide concepts for inferring knowledge
 - Aim: reject null-hypothesis
 - Careful investigation of model accuracy is needed
 - Methods have certain requirements to data distribution
 - Regression method with linear models
 - Time series: variables depend on previous state
 - Geospatial data is treated with Kridging
- More about prediction in the machine learning lecture

Bibliography

- 1 Book: Statistik macchiato Cartoon-Stochastikkurs für Schüler und Studenten. Andreas Lindenberg, Irmgard Wagner. Pearson.
- 2 Book: Data Science for Dummies. Lillian Pierson. A Wiley Brand.
- 4 Lag operator, Wikipedia. https://en.wikipedia.org/wiki/Lag_operator
- 10 Wikipedia
- 21 Book: Y. Dodge. The Oxford Dictionary of Statistical Terms. ISBN 0-19-920613-9
- 22 https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
- 23 http://blog.yhathq.com/posts/r-lm-summary.html
- 24 Forecasting: principles and practise https://www.otexts.org/fpp