Statistics: A Primer
 Lecture BigData Analytics

Julian M. Kunkel
julian.kunkel@googlemail.com
University of Hamburg / German Climate Computing Center (DKRZ)

> 2016-10-28

Disclaimer: Big Data software is constantly updated, code samples may be outdated.

Outline

1 Descriptive Statistics

2 Distribution of Values

3 Inductive Statistics

4 Summary

Statistics: Overview

Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data [21]
Either describe properties of a sample or infer properties of a population Important terms [10]

■ Unit of observation: the entity described by the data

- Unit of analysis: the major entity that is being analyzed

■ Example: Observe income of each person, analyse differences of countries
■ Statistical population: Complete set of items that share at least one property that is subject of analysis

■ Subpopulation share additional properties
■ Sample: (sub)set of data collected and/or selected from a population
■ If chosen properly, they can represent the population
■ There are many sampling methods, we can never capture ALL items
■ Independence: one observation does not effect another
■ Example: select two people living in Germany randomly
■ Dependent: select one household and pick a married couple

Statistics: Variables

■ Dependent variable: represents the output/effect
■ Example: word count of a Wikipedia article; income of people
■ Independent variable: assumed input/cause/explanation

- Example: number of sentences; age, educational level

Characterization

■ Univariate analysis: characterize a single variable
■ Bivariate analysis: describes/analyze relationships between two vars
■ Multivariate statistics: analyze/observe multiple dependent variables

- Example: chemicals in the blood stream of people or chance for cancers, Independent variables are personal information/habits

Descriptive Statistics [10]

■ The discipline of quantitatively describing main features of sampled data

- Summarize observations/selected samples

■ Exploratory data analysis (EDA): approach for inspecting data
■ Using different chart types, e.g., box plots, histograms, scatter plot
■ Methods for univariate analysis

- Distribution of values, e.g., mean, variance, quantiles
- Probability distribution and density
- t-test (e.g., check if data is t-distributed)

■ Methods for bivariate analysis

- Correlation coefficient ${ }^{1}$ describes linear relationship
- Rank correlation ${ }^{2}$: extent by which one variable increases with another var
- Methods for multivariate analysis

■ Principal component analysis (PCA) converts correlated variables into linearly uncorrelated variables called principal components

[^0]
Example Dataset: Iris Flower Data Set

- Contains information about iris flower

■ Three species: Iris Setosa, Iris Virginica, Iris Versicolor
■ Data: Sepal.length, Sepal.width, Petal.length, Petal.width

R example

```
> data(iris) # load iris data
> summary(iris)
Sepal.Length Sepal.Width Petal.Length
Min. :4.300 Min. :2.000 Min. :1.000
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
Median :5.800 Median :3.000 Median :4.350
Mean :5.843 Mean :3.057 Mean :3.758
Mean :5.843 Mean :3.057 Mean :3.758
Max. :7.900 Max. :4.400 Max. :6.900
Petal.Width Species
Min. :0.100 setosa :50
1st Qu.:0.300 versicolor:50
Median :1.300 virginica :50
Mean :1.199
3rd Qu.:1.800
Max. :2.500
# Draw a matrix of all variables
> plot(iris[,1:4], col=iris$Species)
```


 \forall

R plot of the iris data

Distribution of Values: Histograms [10]

■ Distribution: frequency of outcomes (values) in a sample
■ Example: Species in the Iris data set
■ setosa: 50
■ versicolor: 50
■ virginica: 50
■ Histogram: graphical representation of the distribution
■ Partition observed values into bins
■ Count number of occurrences in each bin
■ It is an estimate for the probability distribution

R example

Histograms with 10 and 25 bins

Distribution of Values: Density [10]

- Probability density function (density):

■ Likelihood for a continuous variable to take on a given value
■ Kernel density estimation (KDE) approximates the density

R example

```
# The kernel density estimator moves a function (kernel) in a window across samples
# With bw="SJ" or "nrd" it automatically determines the bandwidth, i.e., window size
d = density(iris$Petal.Length, bw="SJ", kernel="gaussian")
plot(d, main="")
```


Density estimation of Petal.Length

Distribution of Values: Quantiles [10]

- Percentile: value below which a given percentage of observations fall
- q-Quantiles: values that partition a ranked set into q equal sized subsets

■ Quartiles: 3 data points that split a ranked set into 4 equal points

- Q1=P(25), Q2=median=P(50), Q3=P(75), interquartile range iqr=Q3-Q1

■ Five-number summary: (min, Q1, Q2, Q3, max)

- Boxplot: shows quartiles (Q1,Q2,Q3) and whiskers

■ Whiskers extend to values up to 1.5 iqr from Q1 and Q3
■ Outliers are outside of whiskers

R example

```
> boxplot(iris, range=1.5) # 1.5 interquartile range
> d = iris$Sepal.Width
> quantile(d)
    0% 25% 50% 75% 100%
2.0
> q3 = quantile(d,0.75) # pick value below which are 75%
> q1 = quantile(d,0.25)
> irq = (q3 - q1)
# identify all outliers based on the interquartile range
> mask = d < (q1 - 1.5*irq) | d > (q3 + 1.5*irq)
# pick outlier selection from full data set
> o = iris[mask,]
# draw the species name of the outliers on the boxplot
> text(rep(1.5,nrow(o)), o$Sepal.Width, o$Species,
    col=as.numeric(o$Species))
```


Density Plot Including Summary

```
d = density(iris$Petal.Length, bw="SJ",
    < kernel="gaussian")
# add space for two axes
par(mar=c(5, 4, 4, 6) + 0.1)
plot(d, main="")
# draw lines for Q1, Q2, Q3
q = quantile(iris$Petal.Length)
q = c(q, mean(iris$Petal.Length))
abline(v=q[1], lty=2, col="green", lwd=2)
abline(v=q[2], lty=3, col="blue", lwd=2)
abline(v=q[3], lty=3, col="red", lwd=3)
abline(v=q[4], lty=3, col="blue", lwd=2)
abline(v=q[5], lty=2, col="green", lwd=2)
abline(v=q[6], lty=4, col="black", lwd=2)
# Add titles
text(q, rep(-0.01, 5), c("min", "Q1", "median",
    \hookrightarrow"Q3", "max", "mean"))
# identify x limits
xlim = par("usr")[1:2]
par(new=TRUE)
# Empirical cummulative distribution function
e = ecdf(iris$Petal.Length)
plot(e, col="blue", axes=FALSE, xlim=xlim, ylab="",
    \hookrightarrow xlab="", main="")
axis(4, ylim=c(0,1.0), col="blue")
mtext("Cummulative distribution function", side=4,
    line=2.5)
```


Density estimation with 5-number summary and cumulative density function

Correlation Coefficients

■ Measures (linear) correlation between two variables
■ Result is between -1 and +1
$\square>0.7$: strong positive correlation
■ >0.2: weak positive correlation

- 0: no correlation, < 0: negative correlation

R example

```
library(corrplot)
d = iris
d$Species = as.numeric(d$Species) # It is normally not
    adviced to convert categorial data to numeric
corrplot(cor(d), method = "circle") # the right plot
mplot = function(x,y, name) {
    pdf(name,width=5,height=5) # plot into a PDF
    p = cor(x,y, method="pearson") # compute correlation
    k = cor(x,y, method="spearman")
    plot(x,y, xlab=sprintf("x\n cor. coeff: %.2f rank coef.:
    %.2f", p, k))
    dev.off()
}
mplot(iris$Petal.Length, iris$Petal.Width, "iris-corr.pdf")
# cor. coeff: 0.96 rank coef.: 0.94
x = 1:10; y = c(1,3,2,5,4,7,6,9,8,10)
mplot(x,y, "linear.pdf") # cor. coeff: 0.95 rank coef.: 0.95
mplot(x, x*x*x , "x3.pdf") # cor. coeff: 0.93 rank coef.: 1
```


Corrplot

Example Correlations for Plots of Two Variables (X, Y)

Correlations for x, y plots; Source: [22]

1 Descriptive Statistics

2 Distribution of Values

3 Inductive Statistics

4 Summary

Distribution of Values

■ Data exploration helps to understand distribution of values for a variable
■ To illustrate data distribution, statistics uses:

- Probability density function (PDF): value and probability; $P(x)$

■ Cumulative distribution function (CDF): sum from $-\infty$ to value; $P(X \leq x)$
■ Many standard distributions exists that can be models for processes

- Discrete probability functions are drawn from a limited set of values
- Continuous probability functions are $\in \mathbb{R}$

■ When we explore data, we may identify these common distributions
■ Discrete probability functions are derived from useful processes

(Continuous) Uniform Distribution

■ Notation: unif(a, b)

- Mean: $\frac{a+b}{2}$
- Variance: $\frac{(b-a)^{2}}{12}$

(a) Source: IkamusumeFan, PDF of the uniform probability distribution (10)

(b) Source: IkamusumeFan, CDF of the uniform probability distribution (10)

Normal Distribution

■ Notation: $\mathcal{N}\left(\mu, \sigma^{2}\right)$
■ Mean: μ
■ Variance: σ^{2}
Source: Dan Kernler, For the normal distribution, the values less than one standard deviation away from the mean account for 68.27% of the set; while two standard deviations from the mean account for 95.45%; and three standard deviations account for 99.73%. [10]

(a) Source: Inductiveload, Probability density function for the normal distribution (10)

(b) Source: Inductiveload, Cumulative distribution function for the normal

Exponential Distribution

■ Notation: Exponential(λ)
■ $\lambda($ rate $)>0$
■ Mean: λ^{-1}
■ Variance: λ^{-2}

■ Models inter-arrival time of a Poisson process

- Memoryless, useful to model failure rates

(c) Source: Skbkekas, Probability density function (10)

(d) Source: Skbkekas, Cumulative distribution (10)

Gamma Distribution

■ Notation: $\operatorname{Gamma}(\alpha, \beta)$

- α (shape), β (rate) >0
- Mean: $\frac{\alpha}{\beta}$
- Variance: $\frac{\alpha}{\beta^{2}}$

(e) MarkSweep and Cburnett, Probability density plots of gamma distributions (10)

(f) MarkSweep and Cburnett, Cumulative distribution plots of gamma distributions (10)

Real Data

■ Observations can be based on several (unknown) processes
Fraction of people of a given age that died in 1999

Mark Bailin, Mortality by age [10]

Real Data (2)

Performance of reading 1 MiB of data from two different storage systems

Lustre parallel file systems vs. pooled memory of the XPD

1 Descriptive Statistics

2 Distribution of Values

3 Inductive Statistics

4 Summary

Inductive Statistics: Some Terminology [10]

- Statistical inference is the process of deducting properties of a population by analyzing samples

■ Build a statistical model and test the hypothesis if it applies
■ Allows to deduct propositions (statements about data properties)
■ Statistical hypothesis: hypothesis that is testable on a process modeled via a set of random variables

■ Statistical model: embodies a set of assumptions concerning the generation of the observed data, and similar data from a larger population. A model represents, often in considerably idealized form, the data-generating process
■ Validation: process to verify that a model/hypothesis is likely to represent the observation/population
■ Significance: a significant finding is one that is determined (statistically) to be very unlikely to happen by chance

■ Residual: difference of observation and estimated/predicted value

Statistics: Inductive Statistics [10]

Testing process

1 Formulate default (null ${ }^{3}$) and alternative hypothesis
2 Formulate statistical assumptions, e.g., independence of variables
3 Decide which statistical tests can be applied to disprove null hypothesis
4 Choose significance level α for wrongly rejecting null hypothesis
5 Compute test results, especially the p-value ${ }^{4}$
6 If p -value $<\alpha$, then reject null hypothesis and go for alternative

- Be careful: (p -value $\geq \alpha$) \nRightarrow null hypothesis is true, though it may be

Example hypotheses

- Petal.Width of each iris flowers species follow a normal distribution

■ Waiting time of a supermarket checkout queue is gamma distributed

[^1]
Checking if Petal.Width is Normal Distributed

R example

```
# The Shapiro-Wilk-Test allows for testing if a population represented by a sample is normal distributed
# The Null-hypothesis claims that data is normal distributed
# Let us check for the full population
> shapiro.test(iris$Petal.Width)
# W = 0.9018, p-value = 1.68e-08
# Value is almost 0, thus reject null hypothesis => in the full population, Petal.Width is not normal distributed
# Maybe the Petal.Width is normal distributed for individual species?
for (spec in levels(iris$Species)){
    print(spec)
    y = iris[iris$Species==spec,]
    # Shapiro-Wilk-test checks if data is normal distributed
    print(shapiro.test(y$Petal.Width))
}
[1] "virginica"
W=0.9598, p-value = 0.08695
# Small p-value means a low chance this happens, here about 8.7%
# With the typical significance level of 0.05 Petal.Width is normal distributed
# For simplicitly, we may now assume Petal.Width is normal distributed for this species
[1] "setosa"
W=0.7998, p-value = 8.659e-07 # it is not normal distributed
[1] "versicolor"
W=0.9476, p-value = 0.02728 # still too unlikely to be normal distributed
```


Linear Models (for Regression) [10]

■ Linear regression: Modeling the relationship between dependent var Y and explanatory variables X_{i}
■ Assume n samples are observed with their values in the tuples ($Y_{i}, X_{i 1}, \ldots, X_{i p}$)

- Y_{i} is the dependent variable (label)
- $X_{i j}$ are independent variables
- Assumption for linear models: normal distributed variables

■ A linear regression model fits $Y_{i}=c_{0}+c_{1} \cdot f_{1}\left(X_{i 1}\right)+\ldots+c_{p} \cdot f_{p}\left(X_{i p}\right)+\epsilon_{i}$

- Determine coefficients c_{0} to c_{p} to minimize the error term ϵ
- The functions f_{i} can be non-linear

R example

```
# R allows to define equations, here Petal.Width is our dependent var
m = lm("Petal.Width ~ Petal.Length + Sepal.Width", data=iris)
print(m) # print coefficients
# (Intercept) Petal.Length Sepal.Width
# -0.7065 0.4263 0.0994
# So Petal.Width =-0.7065 + 0.4263 * Petal.Length + 0.0994 * Sepal.Width
```


Compare Prediction with Observation

Iris linear model

With sorted data

```
# Predict petal.width for a given petal.length and sepal.width
d = predict(m, iris)
# Add prediction to our data frame
iris$prediction = d
# Plot the differences
plot(iris$Petal.Width, col="black")
points(iris$prediction, col=rgb(1,0,0,alpha=0.8))
# Sort observations
d = iris[sort(iris$Petal.Width, index.return=TRUE)$ix,]
plot(d$Petal.Width, col="black")
points(d$prediction, col=rgb(1,0,0,alpha=0.8))
```


Analysing Model Accuracy [23]

■ Std. error of the estimate: variability of c_{i}, should be lower than c_{i}
■ t-value: measures how useful a variable is for the model
$\square \operatorname{Pr}(>|t|)$ two-sided p-value: probability that the variable is not significant
■ Degrees of freedom: number of independent samples (avoid overfitting!)
■ R-squared: fraction of variance explained by the model, 1 is optimal
■ F-statistic: the f-test analyses the model goodness - high value is good

```
summary(m) # Provide detailed information about the model
# Residuals:
# Mrrrrrer
Coefficients:
            Estimate Std.Error t value Pr(>|t|)
# (Intercept) -0.70648 0.15133 -4.668 6.78e-06 ***
# Petal.Length 0.42627 0.01045 40.804 < 2e-16 ***
# Sepal.Width 0.09940 0.04231 2.349 0.0201 *
# Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 " " 1
#
# Residual standard error: 0.2034 on 147 degrees of freedom
# Multiple R-squared: 0.9297, Adjusted R-squared: 0.9288
# F-statistic: 972.7 on 2 and 147 DF, p-value: < 2.2e-16
```

■ Akaike's Information Criterion (AIC)
■ Idea: prefer accurate models with smaller number of parameters

■ Test various models to reduce AIC
■ Improve good candidates

- AIC allows to check which models can be excluded

Time Series

■ A time series is a sequence of observations
■ e.g., temperature, or stock price over time
■ Prediction of the future behavior is of high interest
■ An observation may depend on any previous observation

- Trend: tendency in the data

■ Seasonality: periodic variation

Prediction models

■ Autoregressive models: AR(p)
■ Depend linearly on last p values (+ white noise)
■ Moving average models: MA(q)
■ Random shocks: Depend linearly on last q white noise terms (+ white noise)
■ Autoregressive moving average (ARMA) models
■ Combine AR and MA models
■ Autoregressive integrated moving average: ARIMA(p, d, q)
■ Combines AR, MA and differencing (seasonal) models

Example Time Series

■ Temperature in Hamburg every day at 12:00
■ Three years of data $(1980,1996,2014)$

```
d = read.csv("temp-hamburg.csv", header=TRUE)
d$Lat = NULL; d$Lon = NULL
colnames(d) = c("h", "t")
d$t = d$t - 273.15 # convert degree Kelvin to
    Celcius
plot(d$t, xlab="day", ylab="Temperature in C")
pdf("hamburg-temp-models.pdf", width=5,height=5)
plot(d$t, xlab="day", ylab="Temperature in C")
# Enumerate values
d$index=1:nrow(d)
# General trend
m = lm("t ~ index", data=d)
points(predict(m, d), col="green")
# Summer/Winter model per day of the year
d$day=c(rep(c(1:183, 182:1),3),0)
m = lm("t ~ day + index", data=d)
points(predict(m, d), col="blue");
library(forecast)
# Convert data to a time series
ts = ts(d$t, frequency = 365, start=c(1980, 1))
# Apply a model for non-seasonal data on
    cseasonal adjusted data
tsmod = stlm(ts, modelfunction=ar)
plot(forecast(tsmod, h=365))
```


Temperature time series

Example Time Series Models

Forecasts from STL + AR(14)

Linear models for trend \& winter/summer cycle

Lag Plots

- Lag operator returns the previous element $\left(L X_{t}=X_{t-1}\right)$ [4]

Lag plot, difference for Lag 1 for each element

Standard deviation for all lags

Modeling Spatial Data

■ Assume we measure data (z) on a surface (x, y), e.g., oil reservoirs
■ Kridging: "methods are statistical estimation algorithms that curve-fit known point data to produce a predictive surface" [2, p.116]
■ Variogram: variance between (x, y) pairs depending on the distance

Stations and their observed ozone values

Estimated variogram with bins. A distance $>$ red line, only green stations are compared

Kridging with Different Methods

■ Models: linear, exponential, Gaussian, spherical

Spherical model

Spherical model prediction and actual variance

Summary

■ Statistics allows us to describe propertiers and infer properties
■ Sample: subset of data
■ Population: complete set of items that is subject to analysis
■ Independent vs. dependent variables
■ Descriptive statistics helps analyzing samples
■ Univariate: 5-number summary, quantiles, histograms, boxplots, density
■ Bivariate: correlation of two variables
■ Inductive statistics provide concepts for inferring knowledge
■ Aim: reject null-hypothesis
■ Careful investigation of model accuracy is needed
■ Methods have certain requirements to data distribution

- Regression method with linear models
- Time series: variables depend on previous state

■ Geospatial data is treated with Kridging
■ More about prediction in the machine learning lecture

Bibliography

1 Book: Statistik macchiato - Cartoon-Stochastikkurs für Schüler und Studenten. Andreas Lindenberg, Irmgard Wagner. Pearson.

2 Book: Data Science for Dummies. Lillian Pierson. A Wiley Brand.
4 Lag operator, Wikipedia. https://en.wikipedia.org/wiki/Lag_operator
10 Wikipedia
21 Book: Y. Dodge. The Oxford Dictionary of Statistical Terms. ISBN 0-19-920613-9
22 https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
23 http://blog.yhathq.com/posts/r-Im-summary.html
24 Forecasting: principles and practise https://www.otexts.org/fpp

[^0]: ${ }^{1}$ Pearson's product-moment coefficient
 ${ }^{2}$ By Spearman or Kendall

[^1]: ${ }^{3}$ We try to reject/nullify this hypothesis.
 ${ }^{4}$ Probability of obtaining a result equal or more extreme than observed.

