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Statistics: Overview

Statistics is the study of the collection, analysis, interpretation, presentation,
and organization of data [21]
Either describe properties of a sample or infer properties of a population

Important terms [10]

Unit of observation: the entity described by the data

Unit of analysis: the major entity that is being analyzed

Example: Observe income of each person, analyse differences of countries

Statistical population: Complete set of items that share at least one
property that is subject of analysis

Subpopulation share additional properties

Sample: (sub)set of data collected and/or selected from a population

If chosen properly, they can represent the population
There are many sampling methods, we can never capture ALL items

Independence: one observation does not effect another

Example: select two people living in Germany randomly
Dependent: select one household and pick a married couple
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Statistics: Variables

Dependent variable: represents the output/effect

Example: word count of a Wikipedia article; income of people

Independent variable: assumed input/cause/explanation

Example: number of sentences; age, educational level

Characterization

Univariate analysis: characterize a single variable

Bivariate analysis: describes/analyze relationships between two vars

Multivariate statistics: analyze/observe multiple dependent variables

Example: chemicals in the blood stream of people or chance for cancers,
Independent variables are personal information/habits
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Descriptive Statistics [10]

The discipline of quantitatively describing main features of sampled data

Summarize observations/selected samples

Exploratory data analysis (EDA): approach for inspecting data

Using different chart types, e.g., box plots, histograms, scatter plot

Methods for univariate analysis

Distribution of values, e.g., mean, variance, quantiles
Probability distribution and density
t-test (e.g., check if data is t-distributed)

Methods for bivariate analysis

Correlation coefficient1 describes linear relationship
Rank correlation2: extent by which one variable increases with another var

Methods for multivariate analysis

Principal component analysis (PCA) converts correlated variables into
linearly uncorrelated variables called principal components

1Pearson’s product-moment coefficient
2By Spearman or Kendall
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Example Dataset: Iris Flower Data Set

Contains information about iris flower
Three species: Iris Setosa, Iris Virginica, Iris Versicolor
Data: Sepal.length, Sepal.width, Petal.length, Petal.width

R example

1 > data(iris) # load iris data
2 > summary(iris)
3 Sepal.Length Sepal.Width Petal.Length
4 Min. :4.300 Min. :2.000 Min. :1.000
5 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
6 Median :5.800 Median :3.000 Median :4.350
7 Mean :5.843 Mean :3.057 Mean :3.758
8 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
9 Max. :7.900 Max. :4.400 Max. :6.900

10
11 Petal.Width Species
12 Min. :0.100 setosa :50
13 1st Qu.:0.300 versicolor:50
14 Median :1.300 virginica :50
15 Mean :1.199
16 3rd Qu.:1.800
17 Max. :2.500
18
19 # Draw a matrix of all variables
20 > plot(iris[,1:4], col=iris$Species)
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Distribution of Values: Histograms [10]

Distribution: frequency of outcomes (values) in a sample
Example: Species in the Iris data set

setosa: 50
versicolor: 50
virginica: 50

Histogram: graphical representation of the distribution
Partition observed values into bins
Count number of occurrences in each bin
It is an estimate for the probability distribution

R example

1 # nclass specifies the number of bins
2 # by default, hist uses equidistant bins
3 hist(iris$Petal.Length, nclass=10, main="")
4
5 hist(iris$Petal.Length, nclass=25, main="")
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Distribution of Values: Density [10]

Probability density function (density):
Likelihood for a continuous variable to take on a given value
Kernel density estimation (KDE) approximates the density

R example

1 # The kernel density estimator moves a function (kernel) in a window across samples
2 # With bw="SJ" or "nrd" it automatically determines the bandwidth, i.e., window size
3 d = density(iris$Petal.Length, bw="SJ", kernel="gaussian")
4 plot(d, main="")
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Density estimation of Petal.Length
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Distribution of Values: Quantiles [10]
Percentile: value below which a given percentage of observations fall
q-Quantiles: values that partition a ranked set into q equal sized subsets
Quartiles: 3 data points that split a ranked set into 4 equal points

Q1=P(25), Q2=median=P(50), Q3=P(75), interquartile range iqr=Q3-Q1

Five-number summary: (min, Q1, Q2, Q3, max)
Boxplot: shows quartiles (Q1,Q2,Q3) and whiskers

Whiskers extend to values up to 1.5 iqr from Q1 and Q3
Outliers are outside of whiskers

R example

1 > boxplot(iris, range=1.5) # 1.5 interquartile range
2 > d = iris$Sepal.Width
3 > quantile(d)
4 0% 25% 50% 75% 100%
5 2.0 2.8 3.0 3.3 4.4
6 > q3 = quantile(d,0.75) # pick value below which are 75%
7 > q1 = quantile(d,0.25)
8 > irq = (q3 - q1)
9 # identify all outliers based on the interquartile range

10 > mask = d < (q1 - 1.5*irq) | d > (q3 + 1.5*irq)
11 # pick outlier selection from full data set
12 > o = iris[mask,]
13 # draw the species name of the outliers on the boxplot
14 > text(rep(1.5,nrow(o)), o$Sepal.Width, o$Species,

↪→ col=as.numeric(o$Species))

●
●●
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Sepal.Length Sepal.Width Petal.Length Petal.Width Species
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Density Plot Including Summary

1 d = density(iris$Petal.Length, bw="SJ",
↪→ kernel="gaussian")

2
3 # add space for two axes
4 par(mar=c(5, 4, 4, 6) + 0.1)
5 plot(d, main="")
6 # draw lines for Q1, Q2, Q3
7 q = quantile(iris$Petal.Length)
8 q = c(q, mean(iris$Petal.Length))
9 abline(v=q[1], lty=2, col="green", lwd=2)

10 abline(v=q[2], lty=3, col="blue", lwd=2)
11 abline(v=q[3], lty=3, col="red", lwd=3)
12 abline(v=q[4], lty=3, col="blue", lwd=2)
13 abline(v=q[5], lty=2, col="green", lwd=2)
14 abline(v=q[6], lty=4, col="black", lwd=2)
15 # Add titles
16 text(q, rep(-0.01, 5), c("min", "Q1", "median",

↪→ "Q3", "max", "mean"))
17
18 # identify x limits
19 xlim = par("usr")[1:2]
20 par(new=TRUE)
21
22 # Empirical cummulative distribution function
23 e = ecdf(iris$Petal.Length)
24 plot(e, col="blue", axes=FALSE, xlim=xlim, ylab="",

↪→ xlab="", main="")
25
26 axis(4, ylim=c(0,1.0), col="blue")
27 mtext("Cummulative distribution function", side=4,

↪→ line=2.5)
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Correlation Coefficients

Measures (linear) correlation between two variables
Result is between -1 and +1

>0.7: strong positive correlation
>0.2: weak positive correlation
0: no correlation, < 0: negative correlation

R example

1 library(corrplot)
2 d = iris
3 d$Species = as.numeric(d$Species) # It is normally not

↪→ adviced to convert categorial data to numeric
4 corrplot(cor(d), method = "circle") # the right plot
5
6 mplot = function(x,y, name){
7 pdf(name,width=5,height=5) # plot into a PDF
8 p = cor(x,y, method="pearson") # compute correlation
9 k = cor(x,y, method="spearman")

10 plot(x,y, xlab=sprintf("x\n cor. coeff: %.2f rank coef.:
↪→ %.2f", p, k))

11 dev.off()
12 }
13
14 mplot(iris$Petal.Length, iris$Petal.Width, "iris-corr.pdf")
15 # cor. coeff: 0.96 rank coef.: 0.94
16
17 x = 1:10; y = c(1,3,2,5,4,7,6,9,8,10)
18 mplot(x,y, "linear.pdf") # cor. coeff: 0.95 rank coef.: 0.95
19
20 mplot(x, x*x*x , "x3.pdf") # cor. coeff: 0.93 rank coef.: 1
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Example Correlations for Plots of Two Variables (X, Y)

Correlations for x,y plots; Source: [22]
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Distribution of Values

Data exploration helps to understand distribution of values for a variable

To illustrate data distribution, statistics uses:

Probability density function (PDF): value and probability; P(x)
Cumulative distribution function (CDF): sum from −∞ to value; P(X ≤ x)

Many standard distributions exists that can be models for processes

Discrete probability functions are drawn from a limited set of values
Continuous probability functions are ∈ R

When we explore data, we may identify these common distributions

Discrete probability functions are derived from useful processes
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(Continuous) Uniform Distribution

Notation: unif(a, b)

Mean: a+b
2

Variance: (b−a)2

12

(a) Source: IkamusumeFan, PDF of the
uniform probability distribution (10)

(b) Source: IkamusumeFan, CDF of the
uniform probability distribution (10)
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Normal Distribution

Notation: N (µ, σ2)

Mean: µ

Variance: σ2
Source: Dan Kernler, For the normal distribution, the values less than one
standard deviation away from the mean account for 68.27% of the set;
while two standard deviations from the mean account for 95.45%; and
three standard deviations account for 99.73%. [10]

(a) Source: Inductiveload, Probability density
function for the normal distribution (10)

(b) Source: Inductiveload, Cumulative
distribution function for the normal
distribution (10)Julian M. Kunkel Lecture BigData Analytics, 2016 16 / 34
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Exponential Distribution
Notation: Exponential(λ)

λ (rate) > 0

Mean: λ−1

Variance: λ−2

Models inter-arrival time of
a Poisson process

Memoryless, useful to
model failure rates

(c) Source: Skbkekas, Probability density
function (10)

(d) Source: Skbkekas, Cumulative distribution
(10)
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Gamma Distribution
Notation: Gamma(α, β)

α (shape), β (rate) > 0

Mean: α
β

Variance: α
β2

(e) MarkSweep and Cburnett, Probability
density plots of gamma distributions (10)

(f) MarkSweep and Cburnett, Cumulative
distribution plots of gamma distributions (10)
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Real Data

Observations can be based on several (unknown) processes

Fraction of people of a given age that died in 1999

Mark Bailin, Mortality by age [10]
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Real Data (2)

Performance of reading 1 MiB of data from two different storage systems

Lustre parallel file systems vs. pooled memory of the XPD
Julian M. Kunkel Lecture BigData Analytics, 2016 20 / 34
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1 Descriptive Statistics

2 Distribution of Values

3 Inductive Statistics

4 Summary
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Inductive Statistics: Some Terminology [10]

Statistical inference is the process of deducting properties of a
population by analyzing samples

Build a statistical model and test the hypothesis if it applies
Allows to deduct propositions (statements about data properties)

Statistical hypothesis: hypothesis that is testable on a process
modeled via a set of random variables

Statistical model: embodies a set of assumptions concerning the
generation of the observed data, and similar data from a larger
population. A model represents, often in considerably idealized form, the
data-generating process

Validation: process to verify that a model/hypothesis is likely to
represent the observation/population

Significance: a significant finding is one that is determined
(statistically) to be very unlikely to happen by chance

Residual: difference of observation and estimated/predicted value
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Statistics: Inductive Statistics [10]

Testing process

1 Formulate default (null3) and alternative hypothesis

2 Formulate statistical assumptions, e.g., independence of variables

3 Decide which statistical tests can be applied to disprove null hypothesis

4 Choose significance level α for wrongly rejecting null hypothesis

5 Compute test results, especially the p-value4

6 If p-value < α, then reject null hypothesis and go for alternative

Be careful: (p-value ≥ α) 6⇒ null hypothesis is true, though it may be

Example hypotheses

Petal.Width of each iris flowers species follow a normal distribution

Waiting time of a supermarket checkout queue is gamma distributed

3We try to reject/nullify this hypothesis.
4Probability of obtaining a result equal or more extreme than observed.
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Checking if Petal.Width is Normal Distributed

R example

1 # The Shapiro-Wilk-Test allows for testing if a population represented by a sample is normal distributed
2 # The Null-hypothesis claims that data is normal distributed
3
4 # Let us check for the full population
5 > shapiro.test(iris$Petal.Width)
6 # W = 0.9018, p-value = 1.68e-08
7 # Value is almost 0, thus reject null hypothesis => in the full population, Petal.Width is not normal distributed
8
9 # Maybe the Petal.Width is normal distributed for individual species?
10 for (spec in levels(iris$Species)){
11 print(spec)
12 y = iris[iris$Species==spec,]
13
14 # Shapiro-Wilk-test checks if data is normal distributed
15 print(shapiro.test(y$Petal.Width))
16 }
17
18 [1] "virginica"
19 W = 0.9598, p-value = 0.08695
20 # Small p-value means a low chance this happens, here about 8.7%
21 # With the typical significance level of 0.05 Petal.Width is normal distributed
22 # For simplicitly, we may now assume Petal.Width is normal distributed for this species
23
24 [1] "setosa"
25 W = 0.7998, p-value = 8.659e-07 # it is not normal distributed
26
27 [1] "versicolor"
28 W = 0.9476, p-value = 0.02728 # still too unlikely to be normal distributed
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Linear Models (for Regression) [10]

Linear regression: Modeling the relationship between dependent var Y
and explanatory variables Xi

Assume n samples are observed with their values in the tuples
(Yi,Xi1, ...,Xip)

Yi is the dependent variable (label)
Xij are independent variables
Assumption for linear models: normal distributed variables

A linear regression model fits Yi = c0 + c1 · f1(Xi1) + ...+ cp · fp(Xip) + εi
Determine coefficients c0 to cp to minimize the error term ε

The functions fi can be non-linear

R example

1 # R allows to define equations, here Petal.Width is our dependent var
2 m = lm("Petal.Width ~ Petal.Length + Sepal.Width", data=iris)
3
4 print(m) # print coefficients
5 # (Intercept) Petal.Length Sepal.Width
6 # -0.7065 0.4263 0.0994
7 # So Petal.Width = -0.7065 + 0.4263 * Petal.Length + 0.0994 * Sepal.Width
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Compare Prediction with Observation
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With sorted data

1 # Predict petal.width for a given petal.length and sepal.width
2 d = predict(m, iris)
3
4 # Add prediction to our data frame
5 iris$prediction = d
6
7 # Plot the differences
8 plot(iris$Petal.Width, col="black")
9 points(iris$prediction, col=rgb(1,0,0,alpha=0.8))
10
11 # Sort observations
12 d = iris[sort(iris$Petal.Width, index.return=TRUE)$ix,]
13 plot(d$Petal.Width, col="black")
14 points(d$prediction, col=rgb(1,0,0,alpha=0.8))
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Analysing Model Accuracy [23]

Std. error of the estimate: variability of ci, should be lower than ci

t-value: measures how useful a variable is for the model

Pr(> |t|) two-sided p-value: probability that the variable is not significant

Degrees of freedom: number of independent samples (avoid overfitting!)

R-squared: fraction of variance explained by the model, 1 is optimal

F-statistic: the f-test analyses the model goodness – high value is good

1 summary(m) # Provide detailed information about the model
2 # Residuals:
3 # Min 1Q Median 3Q Max
4 # -0.53907 -0.11443 -0.01447 0.12168 0.65419
5 #
6 # Coefficients:
7 # Estimate Std.Error t value Pr(>|t|)
8 # (Intercept) -0.70648 0.15133 -4.668 6.78e-06 ***
9 # Petal.Length 0.42627 0.01045 40.804 < 2e-16 ***

10 # Sepal.Width 0.09940 0.04231 2.349 0.0201 *
11 # ---
12 # Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 " " 1
13 #
14 # Residual standard error: 0.2034 on 147 degrees of freedom
15 # Multiple R-squared: 0.9297, Adjusted R-squared: 0.9288
16 # F-statistic: 972.7 on 2 and 147 DF, p-value: < 2.2e-16

Akaike’s Information Criterion (AIC)

Idea: prefer accurate models with
smaller number of parameters

Test various models to reduce AIC

Improve good candidates

AIC allows to check which models
can be excluded
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Time Series

A time series is a sequence of observations
e.g., temperature, or stock price over time
Prediction of the future behavior is of high interest

An observation may depend on any previous observation
Trend: tendency in the data
Seasonality: periodic variation

Prediction models

Autoregressive models: AR(p)

Depend linearly on last p values (+ white noise)

Moving average models: MA(q)

Random shocks: Depend linearly on last q white noise terms (+ white noise)

Autoregressive moving average (ARMA) models

Combine AR and MA models

Autoregressive integrated moving average: ARIMA(p, d, q)

Combines AR, MA and differencing (seasonal) models
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Example Time Series

Temperature in Hamburg every day at 12:00
Three years of data (1980, 1996, 2014)

1 d = read.csv("temp-hamburg.csv", header=TRUE)
2 d$Lat = NULL; d$Lon = NULL
3 colnames(d) = c("h", "t")
4 d$t = d$t - 273.15 # convert degree Kelvin to

↪→ Celcius
5 plot(d$t, xlab="day", ylab="Temperature in C")
6
7 pdf("hamburg-temp-models.pdf", width=5,height=5)
8 plot(d$t, xlab="day", ylab="Temperature in C")
9
10 # Enumerate values
11 d$index=1:nrow(d)
12
13 # General trend
14 m = lm("t ~ index", data=d)
15 points(predict(m, d), col="green")
16
17 # Summer/Winter model per day of the year
18 d$day=c(rep(c(1:183, 182:1),3),0)
19 m = lm("t ~ day + index", data=d)
20 points(predict(m, d), col="blue");
21
22 library(forecast)
23 # Convert data to a time series
24 ts = ts(d$t, frequency = 365, start= c(1980, 1))
25 # Apply a model for non-seasonal data on

↪→ seasonal adjusted data
26 tsmod = stlm(ts, modelfunction=ar)
27 plot(forecast(tsmod, h=365))
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Example Time Series Models
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Linear models for trend & winter/summer cycle

Forecasts from STL +  AR(14)
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Using the forecast package/stlm()
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Lag Plots

Lag operator returns the previous element (LXt = Xt−1) [4]

Lag plot, difference for Lag 1 for each element Standard deviation for all lags
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Modeling Spatial Data

Assume we measure data (z) on a surface (x,y), e.g., oil reservoirs
Kridging: “methods are statistical estimation algorithms that curve-fit
known point data to produce a predictive surface” [2, p.116]
Variogram: variance between (x,y) pairs depending on the distance

Stations and their observed ozone values

Estimated variogram with bins. A
distance > red line, only green
stations are compared
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Kridging with Different Methods

Models: linear, exponential, Gaussian, spherical

Spherical model Spherical model prediction and actual variance
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Summary

Statistics allows us to describe propertiers and infer properties

Sample: subset of data
Population: complete set of items that is subject to analysis
Independent vs. dependent variables

Descriptive statistics helps analyzing samples

Univariate: 5-number summary, quantiles, histograms, boxplots, density
Bivariate: correlation of two variables

Inductive statistics provide concepts for inferring knowledge

Aim: reject null-hypothesis
Careful investigation of model accuracy is needed
Methods have certain requirements to data distribution
Regression method with linear models
Time series: variables depend on previous state
Geospatial data is treated with Kridging

More about prediction in the machine learning lecture
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