Data Reduction Techniques

— Seminar “New trends in HPC"—
— Project “Evaluation of parallel computers” —

Arbeitsbereich Wissenschaftliches Rechnen
Fachbereich Informatik
Fakultat fiir Mathematik, Informatik und Naturwissenschaften
Universitat Hamburg

Vorgelegt von: Kira Isabel Duwe

E-Mail-Adresse: Oduwe@informatik.uni-hamburg.de
Matrikelnummer: 6225091

Studiengang: Master Informatik

Betreuer: Michael Kuhn

Hamburg, 05. September 2016

Abstract

Due to the ever-present gap between computational speed and storage speed every
computer scientist is confronted with a set of problems regularly.

The storage devices are not capable of keeping up with the speed the data is computed
with and needs to be processed with to fully exhaust the possibilities brought up by the
computational hardware.

In High Performance Computing (HPC) storage systems are gigantic and store around
two-digit numbers of PB while they need to cope with throughput around TB/s.

So, for this field of research it is even more important to find solutions to this growing
problem.

The difficulties handling the Input and Output (I/O) could be reduced by compressing
the data.

Unfortunately, there is little or no support by the file system except some local concepts
of Zettabyte File System (ZFS) and btrfs.

This report covers on the one hand the theoretical background on data reduction
techniques with a focus on compression algorithms. For the basic understanding com-
pressibility, the Huffman-Encoding as well as the Borrows-Wheeler-Transformation are
discussed.

To illustrate the difference between various compression algorithms the Lempel-Ziv (LZ)-
family and the deflate format act as a starting point. A selection of further algorithms
from simple ones like Run Length Encoding (RLE) to bzip2 and Zstandard (ZSTD) is
presented afterwards. On the other hand, the report also documents the work to the
practical side of compression algorithms and measurements on large amounts of scientific
data.

A tool called fsbench providing the basic compressing infrastructure while offering a
number of around fifty different algorithms is analysed and adapted to the needs of HPC.
Additional functionality is supplied by a Python script named benchy to manage the
results in SQLite3 data base.

Adaptations to the code and reasonable evaluations metrics as well as measurements on
the Mistral test cluster are discussed.

Contents

1 Foreword
2 Introduction - Seminar

3 Different data reduction techniques

3.1 Mathematical Operations
3.2 Deduplication L
3.3 Recomputation L

4 Information theory and probability codes

4.1 Entropyo L e
4.2 Kolmogorov complexity
4.3 Probability codes
4.3.1 Prefixcodes
4.3.2 Huffmancodes.
4.3.3 Run-length encoding
4.3.4 Move-to-front transform L.
4.4 Burrows-Wheeler transformation,
4.5 Compressibility L
4.5.1 Prefix estimation
4.5.2 Heuristic based estimation

5 Compression algorithms

5.1 LZ-Family
5.2 Deflate
5.3 Algorithms by Google
5.3.1 Gipfeli e
5.3.2 Brotli.
5.4 bzip2 and pbzip2 oL

6 Conclusion - Seminar
7 Introduction - Project

8 Design, Implementation, Problems

8.1 Current state of the programm 0L
8.1.1 fsbench e
8.1.2 Python e
8.1.3 Database scheme Lo

10
11

12
12
13
13
13
14
15
16
17
18
18
19

23
24
30
31
31
32
34

36

37

8.2 Selection of the evaluated algorithms
8.3 Encountered problems e

9 Measurements and evaluation metrics
10 Conclusion - Project

Bibliography

Acronyms

List of Figures

List of Tables

Listings

46

55

56

61

63

64

65

1 Foreword

This report is divided into two large parts.

The first one covers the theoretical background of data reduction techniques, which I
discussed in my talk in the seminar “New trends in high performance computing”.

It begins with different approaches in general to data reduction as scientists have a
slightly different view as computer scientists on how to handle the problems.

Those approaches are then discussed in more detail, starting with mathematical opera-
tions and transforms such as the Fourier transform.

Afterwards, essential knowledge for understanding compression algorithms is presented
as well as a brief overview over other techniques such as deduplication and recomputing.
It is followed by a list of compression algorithms, I found interesting for quite a few
reasons.

This will be the biggest part as my masters project was to extend a tool to evaluate
compression algorithms.

Therefore, a detailed insight is given for a number of selected compression algorithms for
example the LZ-family, especially LZ4, and bzip2.

At the end, there is a conclusion summarising the most important aspects.

The second part documents my work in within the project “Evaluation of parallel
computers”. The main goal was to improve and extend the general infrastructure to
compare different compression algorithms on large amounts of scientific data stored in
several different data formats.

Due to some basic erroneous behaviour the focus shifted over time to fixing the infras-
tructure and providing general solutions on how to approach compression algorithms’
evaluation. I analysed the already existing tool “fsbench” and adapted the input from a
file based approach to a stream like behaviour.

Those changes and the ones to the corresponding Python script “benchy” are documented
and explained later on as well as all the problems I encountered on my way.

At last the measurements I run on the Mistral test cluster are discussed.

2 Introduction - Seminar

This chapters elaborates some of the reasons why scientists, especially computer scientists
are concerned with data reduction techniques. As an example, details on the planned
square kilometre array are given to illustrate the extreme requirements on storage systems.

Due to the ever-present gap between computational speed and storage speed every
computer scientist is confronted with a set of problems regularly.

The storage devices are not capable of keeping up with the speed the data is computed
with and needs to be processed with to fully exhaust the possibilities brought up by the
computational hardware.

In high performance computing (HPC) storage systems are gigantic and store around
two-digit numbers of PB while they need to cope with throughput around TB/s.

So for this field of research it is even more important to find solutions to this growing
problem.
The difficulties handling the I/O could be reduced by compressing the data.
Unfortunately, there is little or no support by the file system except some local concepts
of ZFS and btrfs.

Such an amount of data comes with further problems.
Often ignored is the maintenance aspect. The storage usually needs constant power
supply to store the data. Besides the electricity bill there are the costs to buy the storage.
So reducing the amount of information stored will reduce the bill or enable storing
additional data as well.

However, handling growing sets of data is not only a problem with regards to ca-
pacity or budgets’ limits. Another important aspect is transmitting data consumes time
and energy.

Exceeding the limits of a system can have a lot of severe consequences.

An example to illustrate further problems is the Kepler satellite.

First of all, it is an isolated system not capable of adapting on the fly with just buying
new hardware. Therefore, it is crucial to find a fitting solution over a long period of time.

The scientific data is sent down to earth every 30 days.
Since 95-megapixel images are recored by the Kepler satellite once every six seconds the
resulting data set size exceeds the storing and transfer capabilities of the system by far.
[Bor(09, p.24-25]. The down link to earth is provided via a K,-band with a maximum
transfer rate of around 550 KB per second [Bor09, p.7].
So, data selection as well as data reduction is needed to be able to send the data most

important to the mission down to earth.

And reducing data becomes even more important as the experiments conducted for
example in physics are producing more and more data.

Without this massive amount of data scientists won’t be able to gain any new insights
to their research field. The ‘easy questions’ are already answered.

For example the square kilometre array (Square Kilometre Array (SKA)), a gigan-
tic radio telescope, is needed to further investigate galaxy formation and their evolution
as well as to test Einstein’s general theory of relativity.

It will be able to survey the sky more than ten thousand times faster than before while
being 50 times more sensitive. [TGB™13]. The resulting data rates will be about many
petabits/s of data which represents over 100 times the internet traffic data rates of today.
This is due to the enormous measurements of the collecting area which sums up to over
a square kilometre and inspired the name.

All those diverse problems will very likely not just disappear but continue to grow
rapidly.

Therefore, it is inevitable to find solutions on how to handle the exponential growth of
produced data and the enhanced requirements on storage systems.

3 Different data reduction techniques

This chapter covers different ways of data reduction, particularly mathematical operations
like the Fourier series as well as deduplication and recomputation.

As already mentioned, scientists are closely involved in this topic as well as computer
scientists who normally solve any occurring problems around data storage.
However, they have slightly different methods how to reduce the data.

Physicists for example will rather discuss what data is most import and which pre-
cision is really needed than how to compress it on already limited hardware.

They are more interested in filtering the data to keep the valuable one.

Computer scientists on the other hand are often just concerned with how to compress
the data as small and as fast as possible.

This results in a variety of approaches to minimise the data size.
In the following, a selection of attempts is presented and briefly discussed.
In general, there are two basic methods called lossless and lossy reduction.
Lossy reduction is the term for all those variants which, in one way or another, lose
data and therefore manage to keep the size smaller by just discarding some part of the
data. For example cutting down the decimals of a number decreases the size while losing
precision.
In contrast, lossless reduction describes all those variants which are able to maintain
all the information by reducing the redundancy, e.g. deduplication or the algorithms
discussed in chapter 5.

3.1 Mathematical Operations

The field of mathematical operations with the aim to reduce data size is very large.
Therefore, this section is only able to merely touch the surface and point to further and
additional literature.

There is a large variety of operations ranging from simple ones like rounding to a certain
precision to more complex approaches like Fourier series or the Fourier transform.

In case of the Fourier series, one can describe the spectrum of a periodic signal using
sine and cosine coefficients and if only a certain precision is needed discard the higher
terms.

For describing aperiodic signals the Fourier transform is used.
Fourier series: f(t) = % + >3, (ax - cos(kt) + by, - sin(kt))
Fourier transform : f(t) = \/% 12 flw)et dw

/\ d/\/\/\ V/\/A [

/ \/\vﬂ\/\v\/ﬂv

Figure 3.1: Rectangular pulse and approximating Fourier series [fou]

In Figure 3.1 the approximating Fourier series for a rectangular pulse is illustrated.
The first order is a normal sine function. With growing order the number of coefficients
(visible as increasing number of minima and maxima) for the resulting sum comes closer
to the original pulse.

Cyan: first approximation

Green: second approximation

Red: sixth approximation

Grey: fifteenth approximation

If a sufficient precision is reached one can describe the signal with this approximation
and cut down the size of storage drastically.

Another way of using this idea of splitting a signal into its frequencies is by applying the
fast Fourier transform, which is an efficient algorithm to calculate the discrete Fourier
transform.

This method is often used when processing images or audio signals.

Typically, images result in only a few frequencies with a high amplitude. Hence, one can
dispose of the rest.

Another example is the MP3-Format which uses a modified version of the discrete cosine
function to reduce the stored frequencies to the ones human can perceive (as described
in ISO/TEC 11172-3:1993).

Other lossy approaches are statistical methods like linear regression and smoothing.

Over the last decades not only the number of observation increased but also the number
of variables corresponding to an observation. This leads to high-dimensional data sets in
which not all of the variables are equally important to understand the observed system.
Thus, an obvious solution is to transform the problem to a lower dimension while still
enabling sensible analysis. The difficulty lies clearly in determining the boundary what
a still sufficient data set looks like. This problem and following ones are discussed by
Fodor in “A survey of dimension reduction techniques” [Fod02] as well as in [Rus69].

A combination of different approaches is discussed to face the gigantic challenges
arising with the SKA in “Integrating HPC into Radio-Astronomical Data Reduction”
[WGHV11] and more detailed in “the murchison widefield array: square kilometre array
precursor "[TGB*13].

Besides image processing with the fast Fourier Transform, also reducing the dimensions
plays an important role to cut down the size of the data. As integrating the visibility
over longer time intervals is not a useful change, snapshot images and therefore shifting
the problem to the image domain are described as well.

Another way of handling large data sets is presented by Namey et al. in “Data Reduction
Techniques for Large Qualitative Data Sets "[NGTJ08]. They combine filtering the data,
clustering techniques as well as using similarity matrices to compare structured sets.

3.2 Deduplication

Another attempt to reduce the size of a file without losing any information is called
deduplication.

The data of a file is split into non-overlapping blocks. Every block is stored only once
for the whole file. For every following occurrence a reference to the specific block is set
in an additional table. There exist different techniques for splitting the data into blocks.

o Static chunking: The data is divided into equally sized blocks, usually according
to the underlying file system’s block size or a multiple of it.

o Content defined chunking: To reduce the redundancy which is introduced by
static chunking, as even slightly different data sets result in several data blocks,
content defined chunking provides a different approach. To be able to discover
identical areas not equal to a block size, a hash value is computed for all sliding
windows over the data ([Meil3]).

10

To recognise duplicates the checksum of each block is computed, often based on Secure
Hash Algorithm 256 (SHA256). For deduplication not to slow down the system, the
reference table as well as the checksums needs to be located in the main memory to allow
quick access for every look up. The achievable deduplication rate is determined by the
block size. A larger block size decreases the rate whereas a smaller rate increases the
memory requirements. For every TB of data using a block size of 8 KiB between 5-20 GB
of additional memory are necessary to store the table ([Kuh16b],[Kuhl6a]). To justify
this effort a proper data reduction rate is essential. However, a large scale study on
deduplication in online file systems implies a reduction rate of 20 % to 30 % [MKB*12].

A detailed description of different chunking procedures, duplicate detection approaches,
deduplication techniques and their performance is offered by D. Meister in his dissertation
[Meil3]. Mandagere et al. provide an evaluation of several different techniques as well as
general advise for system administrators [MZSUO8]. Further data reduction possibilities
in data deduplication systems like file recipe compression are discussed in detail by
Meister et al. [MBS13].

3.3 Recomputation

This section is completely based on [Kuhl6a].

A different method to reduce the storage requirements of long time storage is recomputa-
tion. With this approach the results are recomputed again when requested. This allows
to drastically decrease the used storage. However, it introduces several difficulties.

As bit by bit correctness is often requested, even slightly different results are unacceptable.
To be able to recompute results maybe even years later on a different machine, it is
crucial to find an appropriate set of information to store.

o Storing binary files: This approach is simplified by using containers and virtual
machines. Recomputation on the same machine is possible by static linking and stor-
ing the used modules. However, the execution on a different architecture is difficult.
Differences in the underlying instruction sets like x86-64 or the Performance Opti-
mization With Enhanced Risc (POWER) architecture (Performance Optimization
With Enhanced Risc) or the endianness complicate the recomputation.

e Storing source code: Variation in the used hardware can be dealt with more
easily. Additional overhead is introduced to run the code with different compilers on
different operating systems. New technologies like processors or network components
might induce changes.

Whether this methods is sensible depends mostly on the access requests and the
costs and capabilities of the system. As the development of computation units evolves
differently than the development of storing medias archiving becomes more expensive in
relation to recomputing and therefore is more likely to be used in the future.

11

4 Information theory and probability
codes

If not noted otherwise this chapter is based on “Introduction to Data Compression” by G.
Blelloch [Ble01].

This chapter covers the basic knowledge needed to understand compression algorithms.
First, an insight is given into information theory and terms like entropy or prefix codes.
Afterwards, some essential transforms like the move-to-front transform or the Burrows-
Wheeler transform are explained. Lastly, the correlation between entropy of a data set
and its compression ration is discussed as well as advanced method to estimate the
compressibility of data.

4.1 Entropy

Originally, the term entropy was introduced in statistical physics. In the following, it
is used as a measurement for the information density of a message. Shannon defined

entropy as,
1
H =" p(s)logg—,
2 pen

where p(s) is the probability of a message s.
Considering an individual message s € S, the self information of a message is defined as,

() = Io 1
i(s) =1 ggp(s).

The self-information is the logarithmic measure how much information a symbol or a
message carries.

In other words, the entropy of a symbol is defined by the expected value of the self-
information. This means, an often occurring message contains less information than
a rare message. For example, a message saying it is going to rain in Hamburg is less
informative than one stating it is going to get hot and sunny.

To take dependencies between messages into account, conditional entropy and Markov
chains are used. They are discussed in detail in [Ble01, p.7-9].

4.2 Kolmogorov complexity

There are several approaches to describe the complexity of a message. One of them is
the Kolmogorov complexity named after the Russian mathematician Andrey Nikolaevich

12

Kolmogorov. It is the shortest description of statements that will produce the character
sequence looked at. For example:

message: ABABABABABABABABABAB
shortest description: AB*10
= Kolmogorov complexity : 5

The message is a string consisting of ten times “AB” which is the shortest description to
produce “ABABABABABABABABABAB?”. So, the Kolmogorov complexity is a measure
for the structuredness of piece of data and also of its compressibility.

The definition of the Kolmogorov complexity using prefix machines as well as its behaviour
regarding several distribution functions and why the expected Kolmogorov complexity
equals the Shannon Entropy is explained in detail by Grunwald in [GV04].

4.3 Probability codes

In the following, the term “message” is used to describe a part (character or word) of a
larger message which will be referred to as “message sequence”.

Each message can be of a different probability distribution than the others. Blelloch uses
the example of sending an image to illustrate this [Ble01, p.9].

The first message might contain information about the colour and the next message
specifies a frequency component of the previous colour.

In coding theory algorithms are distinguished in two classes: those which use a unique
code for each message and those which combine the codes for different messages.
Huffman codes belong to the first class whereas arithmetic codes are in the second class.
They are able to achieve better compression but due to the combination of codes the
sending of messages has to be delayed. In this report only the first class is covered.

A detailed insight into arithmetic codes is given by Said in “Introduction to arithmetic
coding-theory and practice ”[Sai04].

4.3.1 Prefix codes

When using compression, often there are code words of a variable length.

To avoid ambiguity where one code words stops and another starts, there exist several
approaches. Using a special stop symbol or sending the length of a code word, however
require additional data to be send.

A more efficient solution are prefix codes. Those are uniquely decodable codes.

A prefix code is a code where no code word is prefix of any other code word. For example:

a=1b=01c=000,d =001

010001001101 = bcadab

13

S O = W N

When decoding such a message there is only one fitting match.

Once this is found, there does not exist any longer code that will also match due to the
prefix property. Another important feature of prefix codes is, that one can decode a
message without knowing the next message. A prefix code is optimal, if “there is no other
prefix code for the given probability distribution that has a lower average length”[Ble01,
p.10]. Tt is important to note the following property:

If C is an optimal prefix code for the probabilities {p1, ps, ..., pn }

then p; > p; = l(c;) > l(c;).[Ble01, p.12]

If the probability for i is greater than for j this implies that the code for j must be at
least as long as the one for i. Or in other words the encoding of common symbols takes
less bytes than that of less probable ones.

4.3.2 Huffman codes

The Huffman code, named after David Huffman, is an optimal prefix code. In Listing 4.1
the pseudo code for creating the prefix tree for a given set of messages and their
probabilities is noted.

Listing 4.1: Huffman prefix-tree algorithm

1. BUILD a tree for every message with a single vertex with
— w_1i = p_1i
2. REPEAT until only one tree left
1.SELECT t_1,t_2 with minimal root weights (w_1,w_2)
2. COMBINE them into one tree:
1. ADD new root with w r = w_1 + w_2.
2. MAKE t 1,t 2 children of v_r.

For the four equally probable message a, b, ¢, d the resulting Huffman prefix tree is
depicted in Figure 4.1. It is the shortest code possible code that can be created by a
character based coding.

14

a=00 b =01 c=10 d=10

Figure 4.1: Huffman prefix tree

In Table 4.1 two possible Huffman codes are shown. This situation originates in two
equal probabilities for the occurring symbols. The resulting Huffman codes are both
optimal, sharing an average of 2.2 bits per symbol. The lengths however differ heavily.
To reduce the variance in the code length the pseudo code for creating the Huffman
prefix tree can be altered. In case of the same probabilities for different vertices the
vertex is chosen for merging that was produced the earliest in the algorithm.

Symbol | Probability | Code 1 | Code 2
a 0.2 01 10

b 0.4 1 00

¢ 0.2 000 11

d 0.1 0010 010

e 0.1 0011 011

Table 4.1: Two possible Huffman codes
Taken from [Ble01, p.14]

4.3.3 Run-length encoding

One of the simplest algorithms to take the context into account is the run-length
encoding (RLE). The basic idea is to compress each sequence of equal characters to the
character itself and its occurrence. For example the string “aaabbfdddddeecccc” would
be compressed to “a3b2fldbe2c4”.

As these numbers change the original character occurrence significantly an approach
to preserve the compressibility of a character sequence the symbol counts are written
separately. The previous example string would become “abfdec” and “321524”.

15

=W N

Another version is the zero length encoding (Zero Length Encoding (ZLE)) which
only eliminates the zero sequences in a binary string. Normally, this leads only to low
compression rates.

4.3.4 Move-to-front transform

The following part is mostly based on the report by Burrows and Wheeler ([BW94, p.5-8])
as well as on [mov15].

Another simple approach that considers the context of symbol for encoding is the move-
to-front transform (Move-To-Front transform (MTF)). It only offers a permutation of
the input not a compression! The input are a finite alphabet and a character sequence
of this alphabet. The output of MTF is a sequence of nonnegative integers where every
integer is smaller than the length of the alphabet.

Listing 4.2: MTF algorithm

1. WRITE the complete alphabet into a string a
2. FOR ALL symbol s of the input:

1. RETURN position of s in a

2. REMOVE s from a and append in front

After the execution of the MTF algorithm, as noted in Listing 4.2, often occurring
characters of the input are located further to the front of the alphabet.
Therefore, the output is more likely to contain small numbers which is useful to compress
the sequence of integers afterwards [mov15].
In Table 4.2 the steps of encoding the input string “Mississippi” with the MTF algorithm
are explained. The used alphabet is shrunk to “ABCIMPSabcimps” to shorten the
example.
Input is the current input character of the string to be encoded. Output is the position of
this character in the current alphabet (starting with 0) and alphabet’ is the one resulting
from pushing the character to the front of the alphabet.
The resulting code is (4,10,13,0,1,1,0,1,13,0,1) in contrast to (4,10,13,13,10,13,13,10,12,12,10)
when the alphabet is not sorted.
This highlights the basic assumption of equal characters to appear close to each other and
thus leading to low values. Due to the smaller numbers a following compression is more
efficient. The MTF is often used after a Borrows-Wheeler transformation (section 4.4)
which already raises the probability for equal characters to appear close to one another.

16

Input | Alphabet Output | Alphabet’

M ABCIMPSabcimps | 4 MABCIPSabcimps
i MABCIPSabcimps | 10 iMABCIPSabcmps
s iMABCIPSabcmps | 13 siMABCIPSabcmp
s siMABCIPSabcmp | 0 siMABCIPSabcmp
i siMABCIPSabcmp | 1 isMABCIPSabcmp
s isMABCIPSabcmp | 1 siMABCIPSabecmp
s siMABCIPSabcmp | 0 siMABCIPSabemp
i siMABCIPSabcmp | 1 isMABCIPSabcmp
p isMABCIPSabcmp | 13 pisMABCIPSabcm
p pisMABCIPSabem | 0 pisMABCIPSabcm
i pisMABCIPSabem | 1 ipsMABCIPSabcm

Table 4.2: Move-to-front encoding

Taken from [mov15)

In Table 4.3 the reverse procedure (decoding) is illustrated. Now the integer sequence
(4,10,13,0,1,1,0,1,13,0,1) is to be decoded while using the alphabet “ABCIMPSabcimps”.
Position is the current integer of the sequence and output the decoded symbol.

The columns alphabet and alphabet’ are the same as above.

Position | Alphabet Output | Alphabet’

4 ABCIMPSabcimps | M MABCIPSabcimps
10 MABCIPSabcimps | i iMABCIPSabcmps
13 iMABCIPSabcmps | s siMABCIPSabcmp
0 siMABCIPSabcmp | s siMABCIPSabcmp
1 siMABCIPSabcmp | i isMABCIPSabcmp
1 isMABCIPSabcmp | s siMABCIPSabcmp
0 siMABCIPSabcmp | s siMABCIPSabcmp
1 siMABCIPSabcmp | i isMABCIPSabcmp
13 isMABCIPSabcmp | p pisMABCIPSabcm
0 pisMABCIPSabem | p pisMABCIPSabcm
1 pisMABCIPSabcm | i ipsMABCIPSabcm

Table 4.3: Move-to-front decoding

Taken from [mov15]

4.4 Burrows-Wheeler transformation

This section is based on the report by Burrows and Wheeler [BW94] as well as [Gil04].

In contrast to the previous algorithms the Burrows-Wheeler transformation (Burrows-
Wheeler Transform (BW'T)) is not a compression algorithm!

It provides a permutation of the input data where the same characters are more likely to

17

[\]

follow each other. So the output of the BWT has the same length as its input. A brief
pseudo code for the general functionality is provided in Listing 4.3.

Listing 4.3: Burrows-Wheeler transformation

1. Build all rotations of given input string
2. Sort this with a stable sorting algorithm
3. Result = last column of sorting table

To further illustrate this, an example is given in Table 4.4.
The input string “ANANAS” is to be transformed by BWT. § denotes the finishing
symbol. Without such a symbol the use of an index is necessary to mark the end. The
left column depicts all the rotations of the string. Afterwards, the rotations are sorted
with an algorithm that keeps the internal order of the letters to provide a stable sorting.
In this case a lexicographic sorting was used. The right column provides the result which
consists of the last letter of each sorted row.

’ Step 1: Rotations H Step 2: Sorting H Step 3: Result ‘

ANANASS $ANANAS S
SANANAS ANANASS $
SSANANA ANASSAN N
ASSANAN ASSANAN N
NAS$ANA NANASSA A
ANASSAN NASSANA A
NANASSA SSANANA A

Table 4.4: Burrows-Wheeler transformation
Taken from [burl5]

4.5 Compressibility

This section is based on “To zip or not to zip” by Harnik et al. [HKM'15].

The performance of compression algorithms relies mostly on the compressibility of the
data itself and on the ability to detect incompressible data quickly.

The entropy of a randomly generated string is a lot higher than those of a typical English
text as it follows certain rules how the letters are combined.

Two approaches to detection of incompressible data are discussed in the following.

4.5.1 Prefix estimation

A technique to estimate the compressibility of a file is to compress only one block,
normally the first one, and use the result to decide whether to compress the whole file or
not at all. The performance of this method relies on the assumption the block resembles
the whole file. Compressing the prefix does not result in any overhead only if the decision

18

is made to compress everything. In case of an incompressible first block the effort of
trying to compress it goes to waste as the rest of the file will not be compressed. Prefix
estimation is a simple solution that can minimise the time spent on incompressible data
considerably as it saves the time of attempting to compress the remaining blocks.
However, this procedure fails when compressing a file including a header whose structure
and therefore its compressibility differs a lot from the rest of the blocks.

4.5.2 Heuristic based estimation

This approach is based on a combination of heuristics to identify the compressibility of
a block. These heuristics need to be very efficient to not induce more overhead than
actually compressing the block.

In order to fulfill this requirement random samples are analysed.

The entropy (see section 4.1) is an indication for the compressibility of a data block.
“Byte entropy is an accurate estimation of the benefits of an optimized Huffman encoding.”
[HKM™13, p. 236]. The correlation between the entropy and the compression ratio is
illustrated in Figure 4.2 for 8KB data blocks, where the compression ratio is defined as
the compressed file size in comparison the the original file size.

For the used data set an entropy lower than 5.5 results in compression ratio less than 0.8
and can be regarded as compressible data.

However, there is also data with a higher entropy that still can be compressed well.
The reason is, that the entropy does not capture repetitions.

To avoid this kind of wrong classification an advanced method is necessary to compute
the compressibility.

Entropy

o compressible data
$ oo + i
% 0o © incompressible data

0.4 0.6 0.8 1
Compression ratio

Figure 4.2: Entropy - compressibility relation [HKM*13, p. §]

(Note: compression ratio = compressed size/uncompressed size)

19

—_

O © 00O Ui Wi+

In the following, a suggestion by the IBM research team in Haifa is elucidated.
A static threshold for the compression ratio is set to keep the balance between the
available resources and compression savings. Above a compression ratio of 0.8 the data
should not be compressed in the considered system and application. This value can be
easily adopted to the performance of a different system.
The algorithm to estimate the compressibility is based on the following three heuristics:

o Data core set size: This is the set of unique symbols that covers a major part of
the data. A smaller set is more beneficial for a Huffman encoding and probably
more repetitive than a larger one. The exact value to represent the major part is
to be defined with regards to the specific surrounding requirements.

« Byte entropy: As mentioned before the entropy is useful to cover a certain type
of compressibility. A lower entropy typically results in a better compression ratio.

e Pairs distance from random distribution: This approach captures the prob-
ability of pairs of symbols to appear after each other in the core set. It aims to
differentiate between data that contains repetitions and randomly ordered data.
The calculation is defined as the Euclidean distance between “the vector of the
observed probability of a pairs of symbols appearing in the data, and the vector of
the expected pair probabilities based on the (single) symbol histogram” [HKM™13,
p. 236]:

I fregq(a) * freg(b) fregla,b) '\’
? (size of sample)? number of pairs

Ya#bEcoreset (

Listing 4.4: Algorithm to estimate compressibility

Compress if:

1. data size < 1KB

2. total number of symbols < 50
3. coreset size < 50

4. entropy < 5.5

5a. 5.5 < entropy < 6.5 AND L _2
Do not compress if:

3. coreset size > 200

5a. 5.5 < entropy < 6.5 AND L_2 = low (e.g. 0.001)
5b. entropy > 6.5 AND L_2 = low (e.g. 0.001)

high (e.g. 0.02)

20

The algorithm to estimate the compressibility is noted in Listing 4.4 and illustrated in
Figure 4.3. It aims to recommend an advise as fast as possible whether to compress or
to store. Therefore, the single steps are ordered by their calculation time. The general
flow,from top to bottom, passing from one heuristic to the next complex one is shown by
the downward arrows. The vertical bars represent the recommendation thresholds.
The first step (1) is to always compress small amounts of data as computing the heuristics
takes longer than actually compressing it.

(2) If there is only a small number of symbols (e.g. 50) in the data then the data should
be compressed. (3) Data with a small core set (e.g. < 50) should be compressed. If
the core set size exceeds the threshold (e.g. 200) than it should not be compressed. (4)
Data with a small entropy (e.g. < 5.5) should be compressed.

Step (5) covers the decision for data with a medium entropy (5a) and a high entropy
(5b). Data with a medium and high entropy and nearly random ordering should be
stored without compressing. If the heuristics can not provide a clear decision (value
between thresholds) only Huffman encoding should be used to compress the data.
Finally, data with a high entropy and a high distance value should be compressed.

compress (_l (1) data size

minimal size

compress C (2) symbol set size

small

| (3) coreset size

small * large
(4) entropy medium
compress (—I _|_
low t *
(5a)

distance from random

store 4'_ _I)
compress

close

(5b)

distance from random

store {—I |)

compress
close| far
Huffman only

Figure 4.3: Based on IBM heuristics to detect incompressible data
[HKM+13, p. 9]

21

The extreme ends of the compressibility scale are covered quickly in this heuristic
approach. Data with a very good compression and data that is near the incompressible
end are classified fast.

But, for compression ratios between 0.4 and 0.9 all or most of the particular steps need
to be calculated.

In the evaluation, this algorithm proved to be much faster than the simple prefix
estimation for every compression ratio.

However, its strong side is clearly classifying incompressible data fast where the prefix
estimation induced just overhead. With compressible data on the other hand prefix
estimation has no overhead at all.

Thus, the general advise is to combine these two techniques and switch between them
according to the properties of the current data sets.

22

5 Compression algorithms

In this chapter a set of popular compression algorithms is presented. First, a brief
definition of the basic terms in context of evaluation of compression algorithms is given.
Afterwards the algorithms based on the approach by Lempel and Ziv are discussed in
detail. Then the Deflate format and the related algorithms are illustrated as well as the
tdeas of Gipfeli and Brotli. They are compared against the performance of bzip2 which is
explained at last.

The basic idea of data compression is to reduce redundant information. To achieve
this, the information is transformed to a different representation. This process is called
compression, vice versa decompression. It can either be a lossless or lossy transformation.
In this report, only lossless compression algorithms are discussed.

The terms compression speed, compression ratio and space savings, if not marked
otherwise, are defined as follows:

uncompressed size

MB]
Atime

o Compression speed = measured in [*=

« Compression ratio = ncompressed size
Compressed s1ze

e.g. 12 MB file compresses to 3 MB file has compression ratio of 12/3 = 4

e Space savings = 1 — %, eg. 1— 13—2 =0.75

Normally, either a high compression speed with a acceptable compression ratio or a high
compression ratio with acceptable compression speed is aimed at. Which performance is
acceptable depends largely on the specific use case and the system.
The first case is for example given when optimising the I/0O in a file system. In order to
not induce further delays in an already critical part of the system, the focus lies on a
high compression speed. Whereas, in case of long time archiving of data the space saving
due to a high compression ratio is essential.
Compression can be part of three layers in the I/O stack:

o Application layer: The application itself enables compression. This allows for a
selection of the most fitting algorithm in a specific case. Additional information
about the structure of the data and the application the user typically has, can be
considered.

« File system layer: Compression inside a file system so far is only implemented
in ZFS and SquashFS. In case of ZFS only a static approach is supported which

23

results in the use of one algorithm for the whole file system. SquashF'S is a small
project to create a “compressed read-only filesystem for Linux” [Loull]. Even
though it was already included in the Linux kernel the project dispersed.

e Device layer: Compression in hardware is performed by an algorithm implemented
in the firmware of a specialised hardware device. Therefore, it does not introduce
additional overhead for the processor.

Compression on the file system level as well as on the device layer happens transparent
to the application. The system itself handles the decision and does not involve the user.
Following this idea, Basir et al. presented a “transparent compression scheme for Linux
file systems” using Extended File System (EXT)2/3 as a basis [BY12].

5.1 LZ-Family

This section is based on the paper “A Universal Algorithm for Sequential Data Compres-
sion” by Ziv and Lempel [ZL77] if not marked otherwise.

In the following, the basic idea of the LZ77-algorithm by Lempel and Ziv is explained.

It was the first approach to consider repetitions of symbol sequences and not just the
probability of a symbol (see section 4.3). A repeating part just refers to the first occur-
rence of this specific character sequence using the already processed prefix as a dictionary.
In order to minimise the time spent on searching the size of the dictionary is limited in
practice. This is solved by using a buffer and a sliding window.

They are explained in the following:

Buffer: This is the dictionary used to identify repetitions. The length of the buffer
limits the recognisable character sequence.

Sliding window: It allows to see a specific amount of characters following the
current one. This enables taking repetitions into account.

x: This is the buffer index starting a matching character sequence.

y: It denotes the length of the reoccurring sequence.

z: Contains the next character in the sliding window.

In Table 5.1 the procedure is illustrated in detail.
The input sequence is “Banane”. As the sliding window has a size of four the first four
characters of the input are captured in the first step. Since there is no entry in the buffer
no match can be found. Therefore, the output contains only the next character in the
sliding window.
In step two and three, the dictionary still holds no matching entries which leads the
algorithm to just shift the sliding window over the input.

24

This changes in step four. The sequence “an” of the input is also contained in the buffer
resulting in the output “(5,2,E)”. The matching character sequence in the dictionary
starts at the index five and has the length of two. So, the next unprocessed character in
the sliding window is “e”.

Finally, the whole input is read and processed resulting in an empty sliding window.
The use of the triples enables the possibility to decode a code without an explicit
dictionary as it can be built dynamically with the help of the triples [AHCIT12].

An in-depth analysis of the efficiency boundaries of the LZ77 algorithm in contrast to a

code with full a priori knowledge is given by Lempel and Ziv in [ZL77].

Step | Buffer Sliding window | Output
1 2 3 4 5 61 2 3 4 (x,y,2)

1 B A N A (0,0,B)

2 B/IA N A N (0,0,A)

3 B AN A N E (0,0,N)

4 B A N|A N E (5,2,E)

5 B AN A N E (-5)

Table 5.1: LZ77

The original LZ77-algorithm and its factorisation are the basis for several other
compression algorithms also referred to as LZ-family. A detailed description of several
factorisation methods is provided by Al-Hafeedh et al. [AHCI*12]. They also illustrate
the main data structures, e.g. suffix tree, longest common prefix array, used by the
different algorithms.

For a short overview the most prominent derivatives are noted, ordered by year they
were published:

o Lempel-Ziv 1977 (LZ77): (1977) The first algorithm based on a dictionary
which is stored implicitly in the second component of the triple.

« Lempel-Ziv 1978 (LZ78): (1978) In contrast to the LZ77 LZ78 does not store
the length of a match (y in Table 5.1) enabling further compression of the text but
also raising the need to store the dictionary explicitly. The initial dictionary is not
empty like in LZ77 but consists of an entry for each possible input of length one.
A new entry is added to the dictionary only if it is a prefix of an already included
string [Ble01, p.33]. In order to decompress a LZ78 code the initial dictionary is
needed.

The success of the LZ78 algorithm is due to its fast dictionary operations.

The dictionary is stored as a k-ary tree with the empty string as the root. Due to
the prefix property all internal nodes belong to entries in the dictionary. So, every
path from the root to a node describes a match [Ble01, p.36].

The size of the dictionary can get problematic. To eliminate this problem, the
dictionary can be deleted when exceeding a certain limit (used in GIF) or when it
is not effective (used in Unix Compress)[Ble01, p.34].

25

« Lempel-Ziv Storer and Szymanski (LZSS): (1982) Storer and Szymanski

CO 1O Ul W N

demonstrate in their paper “Data Compression via Textual Substitution” ([SS82])
that the LZ77 algorithm is only “asymptotically optimal for ergodic sources”. For
an ergodic system the average over time is the same as the average over the space
of all system’s states. So the LZ77 algorithm is only optimal for strings tending to
infinity not for finite strings.

Therefore, Storer and Szymanski present improvements to approach the optimum
even for finite strings. They also introduced the use of a flag to differentiate
between a character and a reference to the dictionary.

Lempel-Ziv Welch (LZW): (1985) This is a widely used adaption of the LZ78.
The entries in the dictionary are usually referred to by a 12 bit long index. Entries
ranging from 0 to 255 are initialised at the start. Following entries are added at
run time starting with index 256. In Listing 5.1 the pseudo code is noted where
pattern is the index of the corresponding pattern in the dictionary.

Listing 5.1: LZW Algorithm (taken from [lzw16))

INITIALISE dictionary d:

FOR ALL characters add entry := empty + character
pattern := empty
WHILE next character available:
character := READ next character
IF (pattern + character) contained in d
pattern := pattern + character
ELSE
ADD pattern + character to d
output := pattern
pattern := character
IF (pattern != empty)

RETURN pattern

In Table 5.2 an example is given how the LZW algorithm works.

The input string is “LZWLZ78LZ7TTLZCLZMWLZAP” 22 characters long, which
compresses to “LZW<256>78<259>7<256>C<256>M<258>7ZAP”.

The output is only 16 characters long as a dictionary index equals one character.
To distinguish between references and characters a flag is set.

Step four illustrates the first substitution of a pattern, here LZ, with the index of
dictionary entry, here <256>.

26

Step ‘ Input ‘ Found match ‘ Output ‘ New entry ‘
1 LZWLZ78LZ77TLZCLZMWLZAP | L L LZ (turns to <256>)

2 ZWLZ78LZTTLZCLZMWLZAP | Z Z ZW (turns to <257>)
3 WLZ78LZ77TLZCLZMWLZAP W W WL (turns to <258>)
4 LZ78LZTTLZCLZMWLZAP LZ (= <256>) | <256> | LZ7 (turns to <259>)
5 78LZTTLZCLZMWLZAP 7 7 78 (turns to <260>)

6 S8LZ7TTLZCLZMWLZAP 8 8 8L (turns to <261>)

7 LZ77LZCLZMWLZAP LZ7 (= <259>) | <259> | LZ77 (turns to <262>)
8 TLZCLZMWLZAP 7 7 7L (turns to <263>)

9 LZCLZMWLZAP LZ (= <256>) | <256> | LZC (turns to <264>)
10 CLZMWLZAP C C CL (turns to <265>)
11 LZMWLZAP LZ (= <256>) | <256> | LZM (turns to <266>)
12 MWLZAP M M MW (turns to <267>)
13 WLZAP WL (= <258>) | <258> | WLZ (turns to <268>)
14 ZAP Z Z ZA (turns to <269>)
15 AP A A AP (turns to <270>)
16 P P P -

Table 5.2: An example for LZW
taken from [lzw16]

The detailed description of the algorithm and the improvements in contrast to

LZ78 are elucidated by Welch in [Wel85].
« Lempel-Ziv Ross Williams (LZRW): (1991) LZRW1 is designed for speed.

To compress each byte 13 machine instructions are necessary and four for decom-
pressing. A flag marks the distinction between a literal and a reference. A hash
table is used to store the pointer. An analysis of the performance is provided
in “An Extremely Fast ZIV-Lempel Data Compression Algorithm” by Williams

([Wilo1]).

« Lempel-Ziv Stac (LZS): (1993) also called Stac compression is the American
National Standards Institute (ANSI) Standard X3.241-1994. It consists of a
combination of LZ77 and a fixed Huffman coding. The LZS algorithm was also
used in several Internet protocols:

— Request For Comments (RFC) 1967 — PPP LZS-DCP Compression Protocol
(LZS-DCP) [SF96]

— RFC 1974 — PPP Stac LZS Compression Protocol [FS96]

— RFC 2395 — IP Payload Compression Using LZS [FMO9§]

— RFC 3943 — Transport Layer Security (TLS) Protocol Compression Using
Lempel-Ziv-Stac (LZS) [Fri04]

« Lempel-Ziv Oberhumer (LZO): (1996) LZO is based on LZ77. Its provides a
good compression ratio with a fast compression speed. The strength of LZO is its
fast decompression [Kin05] which works in-place.

27

« Lempel-Ziv Markov Algorithm (LZMA): (1998) LZMA allows a large dictio-
nary size and uses a different method to build the dictionary than LZ77 [TAN15].
On the one hand it uses a Markov-chain based range encoder which is a technique
of arithmetic coding (see section 4.3) and on the other hand it includes several
dictionary search data structures as hash chains and binary trees. [KC15] [sev]

« Lempel-Ziv Jeff Bonwick (LZJB): (2010) LZJB is based on Lempel-Ziv Ross
Welch 1 (LZRW1) and provides some improvements. It was written to enable fast
compression of the ZF'S crash dumps [1zj16]. Its compression rate is acceptable
while the compression speed is fast [Ahr14],

« Lempel-Ziv 4 (LZ4): (2011) LZ4 was developed by Yann Collet and is by now
the successor of LZJB in ZFS.
It offers the two data formats frames and blocks also referred to as file format. In
the later, each compressed block consists of the literal length, the literals themselves,
the offset representing the index of the match and the match length starting with
a minimum length of four. LZ4 offers two different approaches to compression:

— LZ4 fast: This algorithm is developed in order to achieve high compression
speeds with acceptable compression rates. It offers different levels where the
slowest level is 1. This is the regular 1724 with high throughput which uses
a single-cell wide hash table. The size of the hash table can be adapted.
Obviously, a smaller table leads to more collisions and therefore reduces the
compression rate [Coll1] but also takes less time to compress. So, the higher
the value of the acceleration level, the higher the compression speed but the
lower the compression rate.

— LZ4 HC (high compression): With this algorithm the compression rate
is about 20 % higher, whereas the speed is around ten times slower [Fucl6].
Complex structures like binary search trees (Binary Search Tree (BST)) or
morphing match chains (Morphing Match Chain (MMC)) function as as
search function finding more matches and therefore increasing the compression
ratio. MMC does not only use one normal hash chain but also a second
chain linking the matches. So, the number of comparisons shrinks as the first
n Bytes are equivalent, where n is the minimum matching size. Those are
incrementally adapted in order to minimise the memory usage. A detailed
insight in the functionality and a comparison of MMC to BST are given by
Collet in [Colb].

ZSTD

ZSTD, short for Zstandard, is a compression algorithm also developed by Yann Collet.
Its goals are providing a good compression ratio and a good compression speed to fulfill
the “standard compression needs” [Coll5]. It is adaptable to the user’s needs similar to
LZ4, trading compression time for compression ratio. The decompression speed is not
affected by this adjustment and remains high.

28

ZSTD is a combination of an LZ based algorithm and a finite state entropy encoder
(Finiste State Entropy Encoder (FSE)) as an improved replacement for Huffman encoding,.
It also offers a training mode that creates dictionaries based on a few samples for selected
data types. This improves the compression ratio for small file dramatically [Col16].

5.2 Deflate

The Deflate data format is specified in the RFC 1951 [Deu96].

Its purpose was to provide a not patented, hardware independent format that is compat-
ible with the format produced by gzip.

The Deflate algorithm uses a combination of an LZ77 based algorithm and a Huffman
coding. To ensure no patent infringements the algorithm itself is not specified in detail,
so it can be implemented in a way not covered by patents.

Each compressed data block holds a pair of Huffman code trees specifying the represen-
tation of the compression.

The format bases on two types: the literals for which no match was found and the pointer
to the duplication, described by the length, limited to 258 bytes, and the backward
distance, limited to 32 KB.

The representation of literals and the length is encoded in one Huffman tree, the distances
in a separate Huffman tree.

In the Deflate format the Huffman coding has two additional rules: codes of the same
length are ordered lexicographically and longer codes follow shorter ones. This simplifies
the determination of the actual codes.

There are two versions of Huffman codes used: fixed ones and dynamic ones. They only
differ in the way they define the literal/length and distance alphabets. For a detailed
description of fixed and dynamic Huffman codes see [Deu96].

The evaluation of Deflate’s performance,done by Alakuijala et al. in [AKSV15], is shown
in Table 5.3. Due to the format description worded in general terms, there exist several
implementations of the Deflate format. The most popular ones are listed in the following,
ordered by their publication date:

o ZIP: This file format was invented by Phil Katz in 1989. It allows several com-
pression algorithms to generate the format of which Deflate is the most common.
The original implementation was patented in 1990 (U.S. Patent 5051745) [Kat90].

o GZIP: As stated in the RFC 1051 the possibility to produce Deflate files is not
patented. Jean-Loup Gailly and Mark Adler developed it as a free software with
its first release in October 1992. As the first letter indicates gzip is part of the
GNU Project. A detailed description of the internals especially the table lookup is
offered by Gailly and Adler at [GA15]. ZLIB is the related library providing an
abstraction of the Deflate algorithm.

o Zopfli: Zopfli is another implementation of the deflate algorithm. It was developed
in 2012 by Jyrki Alakuijala who is part of the Swiss Google Team. This inspired

29

the naming which derives from Zopfli, a Swiss pastry. Zopfli enables a higher com-
pression ratio while still being compatible to the Deflate format. The compression
speed is around 80 to 100 times slower than with using gzip but results in a smaller
output size (3.7 -8.3%) [AV].

The denser compression is possible due to the use of a shortest-path-search through
the graph of all possible Deflate representations of the uncompressed data [Bhul3].

5.3 Algorithms by Google

5.3.1 Gipfeli

Gipfeli is a compression algorithm developed by R. Lenhardt and J. Alakuijala. They
explained the naming as follows: “Gipfeli is a Swiss name for croissant. We chose this
name, because croissants can be compressed well and quickly” [LA12, p.1].

This idea probably inspired the naming of Zopfli and Brotli as well.

Gipfeli is based on LZ77 and focuses on achieving a high-speed compression.
Therefore, Huffman codes or arithmetic codes are not used.

As opposed to most algorithms aiming for high compression speed, Gipfeli uses entropy
coding, an ad-hoc entropy coding for literals and a static entropy code for the backwards
references. In order to keep the resource usage in range the input is sampled to gather
the statistics and build a conversion table. Processing the whole input to compute the
entropy code for the literals is too time consuming.

Gipfeli includes a number of improvements for higher compression speed:

e Limited memory usage: The implementation uses only about 64 KB of memory.
Therefore, it fits into the Level-1 and Level-2 caches of a CPU. This allows for a
significantly faster compression.

o Adapted references: Gipfeli offers support for backwards references to the
previous block. The value of a hash table entry describes the distance of the hashed
symbols to the start of the block. All values smaller than the current represent
a reference to the current block, otherwise to the previous block. Due to the
semantics of building the hash table, there is no need to adapt the values when
handling backward references. If no match is found for a certain time, the size of
the steps is increased. This enables quick handling of incompressible input.

« Entropy code for content: The main savings (over 75%) using the entropy code
come from compressing commands. However, it is also sensible to compress the
content and reduce the number of bits written.

o Unaligned stores: Often, only a few bits need to be copied. So, it is much faster
to use an unaligned store than to rely on memcpy.

30

5.3.2 Brotli

Brotli, named after another Swiss pastry (Brétli), was designed by Z. Szabadka and J.
Alakuijala. It was submitted as a draft to the Internet Engineering Task Force (IETF)
in April 2014. In July 2016 is has been approved as RFC 7932 [Alal5]. Brotli defines a
new data format.

The general idea is to combine an LZ77 approach with a sophisticated Huffman encoding
of a maximum length that needs to fulfill the same requirements as in case of the Deflate
format (see section 5.2).

The resulting prefix codes are either simple or complex, which is indicated by the first
two bits of the prefix code.

A value of one classifies the code as simple. In that case the code has only two more bits
following, representing the number of symbols minus one.

The complex prefix codes base on a different alphabet size depending on their purpose:

o Literal: The alphabet used to compute the prefix code for a literal has a size of
256.

o Distance: Similar to other LZ algorithms the distance is used to reference du-
plicates and noted in the meta-block. The alphabet size for the prefix code is
dynamic. Its computation is based on the sequences of past distances, the number
of direct distance codes and the number of postfix bits:

16 + NDIRECT + (48 << NPOSTFIX)
A detailed description is provided in the RFC [Alal5, p.17-19]

o Insert-and-copy length: The insertion length describes the number of following
literals. The number of bytes to copy is defined by the copy length. The prefix
code to encode this information is based on an alphabet size of 704.

e Block count: To compute the prefix code for the block count an alphabet size of
26 is used.

« Block type: NBLTYPES denotes the number of block types of literals (L),
insert-and-copy-lengths (I) and distances (D).
The alphabet size of each block type codes is NBLTYPES(x) + 2, where x is L, or
D.
The pair of block type t and block count n is called block-switch command and
indicates a switch to a block of type t for n elements.

o Context map: The context map is a matrix containing the indexes of prefix codes.
It indicates which prefix code to use for encoding the next literal or distance. There
is one matrix of size 64 * NBLTYPESL for literals and one of size 4 * NBLTYPESD
for distances.

The alphabet size to compute the corresponding prefix codes is based on the number
of run length codes (RLEMAX) and the maximum value of the context map plus
one (NTREES) by NTREES(x) + RLEMAX(x), where x is L or D.

31

Additionally, Brotli provides a pre-defined static dictionary that consists of around
13.000 strings, e.g. common words or substrings of English, Spanish, Chinese, Hindi,
Arabic, HTML, Java script et cetera.

A procedure to transform the words expands the static dictionary. Therefore, every word
in this dictionary has 121 forms, the original one and those produced by the 120 word
transformations [AKSV15, p.2].

There exist different level of Brotli, from 1 indicating high compression speed to higher
values for high compression ratio.

Alakuijala et al. compare the performance of Brotli level 1,9 and 11 against Deflate 1
and 9, LZMA and bzip2 in [AKSV15].

In Table 5.3 the results for three different tested corpora are noted.

In the uppermost block the Canterbury corpus was evaluated. The middle one shows a
crawled web content corpus of 1285 files with a total size of 70 MB. 93 languages were
used to reduce the bias induced by Brotli’s static dictionary. In the bottom block the
results for the enwik8 file are shown.

The highest value for each corpus and category is printed bold.

For every scenario Brotli compresses and decompresses faster than Deflate or bzip2.
Brotli 11 even achieves the highest compression ratios.

Such evaluation motivate the decision to replace Deflate with Brotli. As of today, several

web browser like Mozilla Firefox, Google Chrome or Opera support compression using
Brotli [usel6].

32

Algorithm | Compression ratio | Compression | Decompression
speed [MB/s| | speed [MB/s]

Brotli 1 3.381 98.3 334.0
Brotli 9 3.965 17.0 354.5
Brotli 11 4.347 0.5 289.5
Deflate 1 2913 93.5 323.0
Deflate 9 3.371 15.5 347.3
bzip2 1 3.757 11.8 40.4
bzip2 9 3.869 12.0 40.2
Brotli 1 5.217 145.2 508.4
Brotli 9 6.253 30.1 508.7
Brotli 11 6.938 0.6 441.8
Deflate 1 4.666 146.9 434.8
Deflate 9 5.528 32.9 484.1
bzip2 1 5.710 11.0 52.3
bzip2 9 5.867 11.1 52.3
Brotli 1 2.711 78.3 228.6
Brotli 9 3.308 5.6 279.4
Brotli 11 3.607 0.4 2574
Deflate 1 2.364 70.8 211.7
Deflate 9 2.742 18.1 217.4
bzip2 1 3.007 12.3 30.8
bzip2 9 3.447 124 30.3

Table 5.3: Performance of Brotli, Deflate and bzip2 on three different data sets

taken from [AKSV15]

5.4 bzip2 and pbzip2

bzip2 is a compression algorithm implemented by J. Seward based on the BWT transform

and a Huffman coding, aiming for a high compression ratio.

Effros et al. present a theoretical evaluation for the BWT in “Universal Lossless Source

Coding With the Burrows Wheeler Transform” [EVKV02].

They explain in detail the asymptotic analysis of the statistical properties of the BWT

as well as the proofs of universality and the boundaries on convergence rates.

The optimal coding performance of BWT in contrast to LZ77 and LZ78 is established

with the following results:

For a finite-memory source generating sequences of length n, the performance of BWT-
based codes converges to O(b%) exceeding the performance of LZ77, converging to
O(taloeny and LZ78, converging to O(—

log n

log n

) [EVKV02, p.1062].

All BWT based codes include variations of the MTF coding [EVKV02, p.1068].
The individual steps for bzip2 are listed in the following:

33

o RLE: The first step of the bzip2 algorithm is to compress the initial data using a run-
length encoding (see subsection 4.3.3), compressing sequences of equal characters
to one appearance and a count.

« BWT: The Burrows-Wheeler transform (see section 4.4) is not a compression
algorithm. It provides a permutation of the input data with a higher probability
for same characters to appear following each other.

e MTF: The subsequent move-to front transform in most cases reduces the entropy
of the data. It transforms the input data to a description, where the length of a
symbol is based on the distance to its last appearance. Equal characters close to
each other are transformed into low value integers. So, recently used symbols get a
shorter description than symbols appearing less.

o« RLE of MTF result: The second RLE is a lot more efficient due to the reordering
of the characters by BWT and MTF such that the same characters are more likely
to appear following another.

e Huffman coding: The performance of the Huffman coding is improved by the
MTF due to the entropy reduction.

bzip2 achieves compression ratios comparable to method like Prediction by Partial
Matching (PPM) with a better compression speed [Gil04].
It offers different compression levels reaching from 1 to 9. These level describe the block
size used to process the data, raging from 100,000 Bytes (1) to 900,000 Bytes (9) [Sew10].
In order to improve the performance on parallel machines a multi-threaded approach was
developed named pbzip2. The concurrent processing of blocks resulted in nearly linear
speedup as evaluated by Gilchrist [Gil04]. This enables bzip2 to be still competitive in
the future.

34

6 Conclusion - Seminar

In times of ever-growing computation speed and an dramatically increasing amount of
data to be processed or stored, data reduction techniques are essential.

A balance between computational overhead and the possible storage savings needs to be
found.

There are approaches to prioritise the data deemed most important like the Fourier series
approximating a periodic signal.

Another solution is to use deduplication and store a block of data just once and reference
to it when occurring later on. While it saves storage capacity, it introduces a significant
increase of memory consumption.

Also the idea of recomputation results in several problems when trying to maintain the
necessary environment.

Further methods to reduce the size of a data set are offered by a various number
of compression algorithms.

Reaching from probability codes like entropy encoding or run-length encoding to dictio-
nary based attempts the underlying concepts vary greatly.

A prominent example is the LZ algorithm using a sliding window to identify reoccurring
sequences and referencing them via a dictionary.

This idea spawned several extending algorithms using numerous additional structures
and functions like a Markov-chain based range encoder or morphing match chains in
order to increase the compression speed and ratio.

This lead to a variety of solutions having big differences in their performance.

From fast and moderately dense compressing algorithms like LLZ4 to slow and highly
compressing approaches like bzip2 a lot of different formats and standards arose.

35

7/ Introduction - Project

As discussed in the previous part of this report there are various methods to compress
data. The goal of the project was to evaluate today’s compression algorithms.
The following points were of special interest:

o Performance evaluation of compression algorithms considering specific file types
o General overview over algorithms’ capabilities

o Providing suggestions for data centers and researchers

The task was consisting of several subtasks.
First, the already existing tool “fsbench” needed to be adapted the needs of HPC.
Afterwards, a measurement was to be conducted to enable a detailed evaluation.
The main goal was to improve and extend the general infrastructure to compare different
compression algorithms on large amounts of scientific data stored in several different
data formats.

Therefore, I analysed fsbench providing the basic compressing framework while offering
a number of around fifty different algorithms. Also, the input method changed from a
file based approach to a stream like behaviour.
Additional functionality is supplied by a Python script named “benchy” to manage the
results in SQLite3 data base.
The changes in fsbench and “benchy” are documented and explained later on as well as
all the problems I encountered on my way.
Following, adaptations to the code and reasonable evaluations metrics are discussed.
Over time the focus shifted from identifying the most promising algorithms for a file
type to fixing the infrastructure and providing general solutions on how to approach
compression algorithms’ evaluation. At last, the measurements I run on the Mistral test
cluster are discussed.

36

8 Design, Implementation, Problems

The necessary software to fulfill the project task can be split into three parts. The
first parts deals with the compression tool itself. Following is the part handling the
parallelisation of the tool via a python script. The last part is the database used to store
the results.

o FEsbench is the programm used for the actual compression of the input file. It
provides a framework to evaluate the performance of a variety of compression
algorithms and codecs. A list of these is provided in the next section. The tool
itself does not provide batch processing of different files.

o Benchy is the python script enabling parallelisation over the input files. The main
structure was developed by Hatzel et al. in their project in 2015.

o An Sqlite3 database is used to store results. The underlying database scheme was
adapted to fit the needs of HPC.

8.1 Current state of the programm

8.1.1 fsbench

Fsbench is a free open source tool written by Przemyslaw Skibinski in C++. It enables
testing a set of compression algorithms on a specific input file.

The input file is defined internally as an ifstreamx*.

However, it does not offer the functionality typically associated with a stream.

Fsbench is not capable of reading continuously into the buffer. It is only able to read files
that have a size which is smaller than a third of the available Random Access Memory
(RAM) size. This is due to the implementation using three buffers: an input buffer
keeping the original file, one buffer for compressing and another for decompressing. As
the input is read into the input buffer in one piece the size of this buffer limits the
processable file size.

So, my first modification was to change the /O behaviour.

In Listing 8.1 the main structure is shown that enables a stream like input processing.
First, the size of the whole input file is determined and split into blocks. The block size
as well as the size of the available RAM are passed as a commandline argument to the
programm .

37

CO 1O Ul W N

DO DO DD = = b s
N — O © 00 ~JO0 Ul W= O©

Depending on whether the file size or the block size is bigger they are initialised accord-
ingly.

An additional for-loop iterates over all blocks of input data and processes them sequen-
tially. To reduce the I/O throughput on the evaluation system a data block is read only
once and then compressed by all the selected compression algorithms.

The measurements are executed right before and after the encoding and decoding step.
When the last block is reached it is essential to check whether the block is completely
filled.

If the size of the remaining input data is smaller than a block size, the reading function
will fill in zeros until the block size is reached.

This will falsely increase the compression speed for the last block.

Listing 8.1: FSBench

if(file_size <= block size)

block_size = this->input_size;
else

this->input_size = block_size;
number_blocks = file _size / block_size;
if (rest)

number_blocks ++;

FOR-LOOP over all blocks
if (last block)
block size = file size-(number blocks * block size);
read input file(input buffer, block_size);
FOR-LOOP over all algorithms
FOR-LOOP iterations
get time;
encode ;
get time;

get time;
decode;
get time;

The compression algorithms available in FSBench are listed below without the bugged
ones which are mentioned in section 8.3. Algorithms analysed in the evaluation are print
in bold.

o LZFX LZA4 1zg LZSS-IM LZV1 LZO 7z-deflate64 Nobuo-Ito-LZSS nop zopfli/zlib
fastlz Halibut-deflate 1zjb LZ4hc zling LZF bcl-lzfast blosc BriefLZ QuickL.Z
bel-rle QuickLZ-zip/zlib nrv2b ZSTD nrv2d z3lib miniz lrrle 7z-deflate crush

38

(\]

zlib Yappy lodepng bzip2 Snappy Shrinker LZWC lzmat pg 1z nrv2e bel-huffman
zlib/tinf

8.1.2 Python

The python script named benchy by Hatzel et al. provides an approach to process several
input files in parallel.

Due to the changes to FSBench benchy needed to be adapted as well. The new 1/0
behaviour led to output statistics for each compressed block.

In order to populate the database with only one entry for each file a modification was
necessary. As the statistics generation influences the program structure significantly I
decided solve this issue in the python script.

Now, the results for one file are gathered and processed according to their type, e.g. sizes
are summed up, speeds and ratios are averaged and then saved to the database. In order
to analyse the compression behaviour for different file types a file type recognition was
implemented as shown in Listing 8.2.

The first solution was to use the python package “magic” leading to a short and simple
result. As Mistral does not support this package I used the file-command of Linux to
solve this task.

Listing 8.2: File type

def get_file type(filename):

val = subprocess.check_output(["file", "-b", filename],
< universal newlines=True)

val = str(val.splitlines () [0])

return val

The next modification was to pin the threads to one core for their whole lifespan in
order to avoid switching between different CPUs.
This enables the use of the related caches which allows for a higher performance.
The implementation is based on a taskset call setting the CPU affinity of a certain
process using its process id as shown in Listing 8.3. Therefore, the Linux scheduler will
not run the process on any other CPU. The parameter “-c¢” replaces the assignment using
a bitmap with a list of processors [Lov04].

Listing 8.3: Python

worker ()
try:
r = ‘‘taskset -c cpu.count fsbench call’’

39

8.1.3 Database scheme

The database scheme was revised to keep it as simple and small as possible.

The task to offer a solution capable of dealing with HPC requirements introduced
boundaries.

To enable evaluations of large amounts of data, from around several hundred GB to PB,
each analysed file should result in just one entry.

The minimum attributes needed to allow a sensible analysis are listed below. The last
three are added for a more comfortable comparison of the result. They could be computed
when necessary to further decrease the database size:

o Filename: In order to interpret the data knowing which kind of input data lead
to the results storing the filename is crucial. To be enable a clear identification the
path is stored as well.

e Codec: The compression algorithm used

e Version: The version of the used compression algorithm to distinguish between
different improvements.

o File size: The input file size is essential not only to determine the performance
of the algorithm but to verify its correctness. If the decompressed file size differs
from the input file size erroneous behaviour took place. The results related are
discarded and not stored at all.

o File type: To analyse the relation between compressibility, compression algorithm
and different file types.

e Block size: This is the command line argument passed to the program. The
maximum value needs to be lower than a third of the system’s RAM available To
determine the influence of different block sizes it is stored.

o Compression time: The averaged minimum time needed to compress the input
file with the specific compression algorithm. The choice of returning the best
compression time was made in the internal design of Fsbench.

Due to the new I/O behaviour the smallest compression time is returned for each
processed block. The averaged result is then stored to the database.

» File size after compression: The compressed file size.

e Decompression time: The minimum time needed to decompress the compressed
file

« Ratio = file size / compressed file size
« Compression speed = file size / compression time

« Decompression speed = file size / decompression time : The best ratio of the
original input size and the decompression time, not the decompressed file and the
decompression time!

40

8.2 Selection of the evaluated algorithms

Fsbench offers a long list of algorithms as shown above.

The evaluation of the whole would have taken too long, so I ran test on my computer to
find the most promising algorithms.

Table 8.1 shows the results of the benchmarking on my computer (i5-4460 CPU @
3.20GHz x 4, 16 GB RAM, SSD) on a small subset of data.

The best results in each column are in bold print. The algorithms selected for further
evaluation are italicised.

Bzip2 provides the best compression ratio. A LRRLE (large range RLE) modification
of the RLE algorithm has the highest compression speed. LZ4HC offers the fastest
decompression.

Additionally, the Deflate implementation 7z-deflate, 1.Z4, LZO, zlib and ZSTD are
selected as they provide an interesting set of features.

The LZ-family as well as the Deflate format are still the most prominent approaches
to compressing data. So, keeping them as reference is a good way to evaluate new
solutions. Blosc is an approach to compression on a different level. It aims to decrease
the transfer time from the memory to the CPU. A strategy of blocking mechanism of
the bus should speed up the transmission. An added shuffling should lead to higher
compression ratios [PK15]. The developers claim to even surpass the memcpy() when
simply copying memory due to the internal multi-threading.

41

Ratio | Compression | Decompression | Codec Version
speed [MB/s] | speed [MB/s]

2.079 9.946 143.143 7z-deflate 9.20

2.079 | 9.032 143.894 7z-deflate64 9.20

1.584 | 82.112 88.425 bel-huffman 1.2.0

1.274 | 5.022 591.625 bel-1zfast 1.2.0

1.018 | 542.811 1 191.825 bel-rle 1.2.0

1.529 | 96.634 305.142 BriefLLlZ 1.0.5

2.130 | 13.832 28.583 bzip2 1.0.6

1.619 | 24.254 226.857 crush 0.0.1

1.371 239.405 696.914 fastlz 0.1.0

1.859 | 3.663 86.655 Halibut-deflate | SVN 19550

1.866 .659 91.832 lodepng 20120729

1.409 | 414.286 2 135.998 L7z} ri27

1.597 | 38.419 2 164.104 LZ}hc ri27

1.417 | 248.447 668.585 LZF 3.6

1.428 | 292.134 674.065 LZFX rl6

1.377 | 43.282 557.531 lzg 1.0.6

1.499 | 363.072 676.839 1zjb FreeBSD r263244

1.590 | 21.976 341.228 lzmat 1.1

1.577 | 852.944 768.560 LZO 2.08

1.501 32.395 676.839 LZSS-IM 2008-07-31

1.086 | 267.869 870.221 LZV1 0.5

1.637 | 85.528 76.676 LZWC 0.4

1.862 | 8.998 317.513 miniz 1.11

1.539 | 0.569 1 370.599 Nobuo-Ito-LZSS | 1.0

1.771 6.828 334.973 nrv2b 1.03

1.767 | 7.063 326.333 nrv2d 1.03

1.794 | 7.009 326.333 nrv2e 1.03

1.734 | 3.245 668.585 pg lz 9.3.4

1.493 | 480.912 479.509 QuickLZ 1.5.1b6

1.559 | 402.131 1 522.888 Shrinker rov

1.341 331.596 1 142.166 Snappy 1.1.0

1.453 | 76.534 2316.505 Yappy v2

1.895 5.355 139.738 z3lib 1.3

1.869 | 7.022 301.230 2lib 1.2.8

1.788 | 42.864 145.036 zling 20140324

2.080 | 0.142 306.850 zopfli/zlib 1.0.0/1.2.8

1.613 | 139.857 451.845 ZS8TD 2015-01-31

1.0 10 964.794 - memcpy 0

1.0 10 964.794 - memmove 0

1.0 364.682 - blosc 1.2.3

1.000 | 6 852.996 6 852.996 Irrle 0

Table 8.1: Evaluation of available algorithms on test data set

42

8.3 Encountered problems

In the following, a brief overview is given over the main problems encountered in this
project.
First, compiling FSBench lead to several partly unsolved issues:

The building type in the CMakeLists.txt is set using set(CMAKE_BUILD TYPE
Release).

Manually adding the flag as a command line argument via cmake -DCMAKE -
BUILD TYPE=Release resulted in different results for the algorithms performance.
Depending on the system it reached from being two times faster to a performance
improved by the factor of ten.

In order to evaluate Brotli C++11-support needs to be enabled. However, compiling
accordingly decreases the performance of every other algorithm.

As the default compiler version of gce (4.4.7) on Mistral is too old to support
C++11-support, a newer one needed be loaded.

The solution was to use another flag in the command line (cmake -DCMAKE_C_-
COMPILER/sw/rhel6-x64

/gcc/gec-5.1.0/bin/gec)

The next problems arose when testing the algorithms. There are several ones already
marked in the CMakeLists.txt by the developer to produce errors. In the following, the
algorithms of theoretical interest for the evaluation are listed that do not work:

Brotli: The implementation seems to be erroneous as the results are even lower than
any other algorithm tested. That does not meet the results of other measurements,
e.g. discussed in subsection 5.3.2.

Gipfeli: This algorithm is marked with the words “rarely works” which unfortu-
nately do represent the behaviour.

Zopfli: The implementation of the compressing part is fine. However, it is not
available as a decoder and therefore not suited to be evaluated.

Ar: This algorithms leads to infinite loop causing the system to hang up.
Density: The result of running this algorithms are sigkills aborting the execution.

LZHAM: This algorithm is already known “to cause problems on some platforms”.
On the system for the first tests as well as the WR-cluster and Mistral and its test
cluster errors and encoding problems appeared.

Lastly, two ideas are discussed that have been discarded.
The first one was to implement an abort after a certain time, in order to reduce the
time spent on incompressible data by algorithms not capable of detecting it reliably. I
thought of the following approaches which are all inadequate for different reasons:

43

o Benchy: The first idea was to just implement the abort as a timeout in the python
script. Simply adding another parameter to the check output function would
be sufficient to terminate the processed algorithm. However, as the goal was to
decrease the 1/0 this is not expedient. The reason is that the algorithms still to be
processed are terminated as well. Introducing a new loop over the list of algorithms
would in the worst case lead to a new call of Fsbench for every algorithm. The
adapted reading of the input would be obsolete.

e Job script: Handling an abort in the surrounding job script would just shift the
problem to the next level. The problems remains the same as with benchy.

e Fsbench: Sending a timeout signal inside of Fsbench is easy. Terminating the
execution of the thread processing the current algorithm, however, is not as simple.

o Fsbench: Another possibility was to implement a timer inside the iteration loop
of Fsbench. Certainly, this is the worst idea solving the issue at a completely wrong
level.

The second idea was to measure the CPU workload and add it to the evaluation
factors. There are several possibilities to implement such a function, e.g. parsing the
output of ps -p pid -o %C. Then the question rose which values could be returned by
such an approach. Implementing the measurement inside of benchy or fsbench would
lead to a workload of 0 or 100 % as nothing else is running on the system.

However, measuring the compression time of an algorithm using 100 % of the CPU allows
for an indirect analysis.

44

9 Measurements and evaluation
metrics

This chapter presents the results of the conducted measurements and their interpretation.

Afterwards, general advise is given regarding the area of application of different algorithms.
The measurements were performed on a test system inside the network of Mistral which

is the supercomputer used by the Deutsches Klimarechenzentrum (DKRZ)(German

climate computing center).

It provides a test environment for smaller projects. For the benchmarks one node was

used. This ruled out problems with parallel access to the database from several nodes.

In addition, it minimises the 1/O as each block is read just once and not requested by

different nodes as well.

The hardware details are listed in Table 9.1.

Architecture x86_ 64
Cores 24
Thread(s) per core 1
Core(s) per socket 12
Socket(s) 2
Stepping 2
CPU MHz 1200.000
L1d cache 32K

L1i cache 32K

L2 cache 256K

L3 cache 30720K

Table 9.1: Used hardware

The resulting performance per compression algorithms for a block size of 419 430 400
byte is shown in Table 9.2.
Besides the average values for the compression speed and the compression ratio the
minimum values as well as the maximum values are listed.
This was necessary as the variance is significant.
A compression speed alternating between several byte per second to several GB per
second is noticeable. The same holds for compression ratios ranging from under one,
indicating increased file sizes, to extrem rations of nearly 50 000.
This behaviour is not explained easily without further analysis.

45

Therefore, several detailed insights into the data sets features are given.

Algorithm | Min cs Max cs Avg cs Min r Max r | Avgr || Min ds Max ds Avg ds
[KB/S] [KB/S] [KB/S] [KB/S] [KB/S] [KB/S]
bzip2 0.0001 21499.9746 | 988.0024 0.0057 | 49 976.2747 | 41.0922 | 0.0006 | 114 2295162 | 3 568.4782
Trrle 0.0202 | 5 115 687.2202 | 465 545.7698 0.0250 | 3 182.5062 | 2.0478 | 0.0211 | 4 447 180.2250 | 482 577.1030
74 0.0110 | 11 888 061.4504 | 132 636.9275 || 9.7274 07 | 2327667 | 2.2561 | 0.0070 | 24 571 100.0386 | 162 718.7803
LZ4hc 0.0120 | 89 956.8805 | 8 055.7947 | 1.2150 e-06 | 234.0557 | 2.7629 || 0.0072 | 2 575 962.3226 | 146 359.7323
Izjb 0.0012 | 821 2562785 | 34 605.4947 || 11848 07 | 30.3450 | 0.9199 | 0.0018 | 3 859 257.0710 | 33 880.0338
L.Z0 0.0062 | 17 130 322.7725 | 111 472.4110 || 8.6009 e-07 | _ 208.0836 | 1.8593 | 0.0009 | 20 530 927.7216 | 53 572.9378
71ib 0.0001 30 699.6455 | 18526854 || 4.9133 e-06 | 793.1625 | 4.1526 | 0.0010 | 345 889.4163 | 18 066.0071
7STD 0.0190 | 3970 313.2261 | 95 807.1384 | 3.2800¢-05 | 2 350.2368 | 9.2758 || 0.0219 | 4 509 263.3381 | 208 305.7386
Table 9.2: Minimum, maximum, average for compression speed, compression ratio and

decompression speed

In order to further highlight the abnormal results the average compression speed and
compression ratios are illustrated in Figure 9.1.
For bzip2 to reach an average compression ratio of 41 when typical ratios are between
one and ten, is not only conspicuous but also suspicious.
Additionally, the average compression speed of bzip2 is notably lower than presented in
other evaluations, e.g. by Alakuijala et al. (see Table 5.3).
Also, LZ4 has proven itself to perform around 800 MB per second on the Silesia corpus
[Colal. So, at least one should examine why this deviation exists.

600

500

Compression speed MByte/s

8
8

100

s
8
3

w
8
8

Irrle

L
ZSTD
I1zjb

4

bzip2

Figure 9.1: Avg.

30
Compression Ratio

46

20

compression speed - avg. compression ratio

The first question arising was, why are there minimum compression ratios significantly
smaller than one. This means the file size increased while compressing.
So, I analysed how many files of the whole data set did not shrink but grow. I was also
interested in finding which algorithms lead to the most increased files.
Table 9.3 shows the number of files successfully measured for each algorithm compared
to the amount with a compression ratio lower than one. The varying number of files
processed is the result of problems some of the algorithms have with specific files.

‘ Algorithm ‘ # Number of files ‘ # files with c_ ratio < 1 ‘ % increased ‘

bzip2 23 594 5 133 21.7
Irrle 23 787 11 194 47.1
LzZ4 23 647 10 692 45.2
LZ4hc 23 787 9 708 40.8
LZJB 23 593 18 390 77.9
LZO 23 593 11 743 49.7
zlib 23 703 7151 30.2
ZSTD 23 692 6 047 25.5

Table 9.3: Percentage of increase files per algorithm

The values illustrated in Table 9.3 are a lot higher than I would have guessed based
on the literature.
In fact, the detection of incompressible data is said to be well developed by now. Possible
explanations are discussed later on.
The higher percentage for all the advanced LZ-algorithms like 1.Z4,1.LZJB and LZO in
contrast to zlib and ZSTD are surprising.
The most outstanding result are the astonishing 78 % of the files compressed by LZJB
that did not become smaller.
As it is a basic function supported and developed further in the ZFS this can not be the
supposed behaviour.
So, either the implementations are erroneous or the data set is very different from all
those benchmarked so far.
If the later is the case then the data has to have some properties differing from the norm.
Thus, I continued to analyse the data set.
The characteristics of data often correlate with the used data type. In order to find a
clue the average compression ratio per file type was examined, as listed in Table 9.4.
Note that the number of appearance is the number of processed files times the number
of algorithms able to compress it without errors. Only four file types result in an average
over 1: two are PostScript documents, one is NetCDF, the last American Standard Code
for Information Interchange (ASCII) text. The entry named “data” gathers all those
files that can not be classified as a specific data type. Possibly, they do not have magic
number in their header indicating the file type.
Especially, interesting in the context of HPC are Network Common Data Form (NETCDF)
and Hierarchical Data Format 5 (HDF).

47

They both belong to the group of formats called self-describing. These formats offer

the possibility to add information about the data.

This allows the application to interpret the data without any further input. Also, inter-
changing data between different scientists becomes more easy as the necessary remarks
can be made directly the data itself. They are widely used for example at the DKRZ.

‘ File type ‘ # of appearance ‘ Average ratio ‘
ASCII C program text 92 0.144
ASCII English text 254 0.157
ASCII text 2774 1.039
ASCII text, with CRLF line terminators 230 0.389
ASCII text, with very long lines 115 0.320
Bourne-Again shell script text executable 217 0.096
Formula Translation (FORTRAN) program 276 0.251
Hierarchical Data Format (version 5) data 2 443 0.886
Korn shell script text executable 346 0.121
NetCDF Data Format data 164 196 5.414
Portable Data Format (PDF) document, version 1.2 116 0.741
PDF document, version 1.5 115 0.186
PostScript document text 18 124 1.161
PostScript document text conforming DSC level 3.0 7 452 0.908
PostScript -7~ ,type EPS, Level 1 348 5.632
Sendmail frozen configuration - version E=1605 12 0.768
Unicode Transformation Format 8 bit (UTF-8) Unicode English text 116 0.509
compress’d data 16 bits 31 096 0.435
data (not recognised) 16 606 17.655
exported SGML document text 4 692 0.160
gzip compressed data (.nc, .n) 25 024 0.919

Table 9.4: File types and their compression ratio

In the following several reason for compression ratios < 1 are given:

» Detection of incompressible data: Being able to detect incompressible data

does not only reduce the time needed to compress the file but also the file size.
Every attempt to compress introduces overhead due to the necessary header.

Compressed Data: The compression ratio for gzip compressed files is as expected.
Due to the additional header overhead the file size increases slightly as represented
in the 0.9.

Implementation of algorithms: Another possibility to explain the enormous
variance in the compression ratio and the number of increasing file sizes is an
erroneous implementation.

Theory: Even in theory not possible to always compress every input. If it
would be possible to compress every input further, then lastly everything must be
representible with nothing. However, even though theory has this boundary it does
not explain this amount of increasing files.

48

o File size: If the input files are really small the header size is disproportionate and
introduces massive overhead.

The only solution without verifying every implementation in detail is to consider the
sizes of the files having a low compression ratio.

‘ File type ‘ Average file size [KB] ‘
ASCII C program text 1.210
ASCII English text 4.807
ASCII text 5 221.327
ASCII text, with CRLF line terminators 152.461
ASCII text, with very long lines 28.680
Bourne-Again shell script text executable 0.497
FORTRAN program 12.872
Hierarchical Data Format (version 5) data 31 180.880
Korn shell script text executable 1.019
NetCDF Data Format data 86 757.143
PDF document, version 1.2 7 950.573
PDF document, version 1.5 74.575
PostScript document text 1 851.516
PostScript document text conforming DSC level 3.0 2 864.840
Sendmail frozen configuration - version E=1605 98 537.540
UTF-8 Unicode English text 71.043
compress’d data 16 bits 102.175
data (not recognised) 1 164.387
exported SGML document text 1 875 857.135
gzip compressed data 1.549

Table 9.5: Average file size per file type with compression ratio < 1

Table 9.5 shows the average file size in KB for every file type. The entries having a
compression ratio over one are in print bold.
If the file size was the problem for the low compression ratio, the rest of the entries would
have to have a small file size. Especially the average file size of 31 MB for an HDF 5 file
and of 1 876 MB for an SGML file do not correspond to their small compression ratio.
And it is unlikely to have a variance in the file size large enough to cover the actual
correlation.
The most reasonable result is again that of the gzip compressed files. With an average
size of 1.5 KB it is small enough to be influenced by the overhead induced by the header.

Table 9.2 not only revealed very small compression ratios but also gigantic ones of
nearly 50 000.

This raises further questions. Where are high ratios to be found? Which file types lead
to compression ratios over ten?

49

| File type [#r>10 | #1r>20[#r>30|#r>40 | #r >50]#r > 60 |

ASCII text 72 35 24 14 10 10
ASCII text 2 2 - - - _ N
NetCDF Data Format data 7 155 4 980 3172 2688 2675 1914
PostScript 1 56 - - - - _
PostScript 2 50 10 - - - _
data 713 389 293 256 222 207

Table 9.6: Number of files reaching specific compression ratios per file type

ASCII 2 = ASCII , with very long lines
PostScript 1 = PostScript document text conforming DSC level 3.0
PostScript 2 = PostScript document text conforming DSC level 3.0, type EPS, Level 1

Table 9.6 illustrates the number of files sufficing gradation steps of compression ratios
per file type. Note that again all occurrences are counted.
This table clarifies the variance. Obviously NetCDF files are the best compressible files
in this evaluation. Even Irrle is able to compress three NetCDF files with a compression
ratio exceeding 60.
Table 9.7 shows all algorithms except 1zjb manage to reach this compression ratio.
I am not sure how Irrle manages to still compress files in a range from 300 to 1000 when
LZ4,1L.ZO and zlib can not keep up.
As discussed in the first part of this report RLE coding is one of the simplest approaches,
often part of other algorithms (see subsection 4.3.3). It replaces a sequence of equal
characters by a combination of symbol and the related count.

[Algorithm [#r > 10[#r >20[#r>30|#1r>40[#1r >50]#1r >60|#1r > 100 #r > 300]#r > 1000 |

bzip2 1773 1566 1440 1403 1398 1288 695 684 332
Irtle i1 32 27 7 27 7 14 14 5
LZ4 767 709 39 34 34 28 18 -

LZ4he 1449 816 180 33 28 28 is

Izjb 91 37 9 - - - -

LZO 782 75 39 34 28 28 15 f

Zlib 1518 751 715 715 697 52 27 20 -
ZSTD 1624 1428 740 712 695 690 341 332 11

Table 9.7: Number of files reaching specific compression ratios per algorithm

Table 9.8 presents the results for the measurement divided in three parts for the file
types NetCDF,HDF 5 and data for a compression ratio over 1.
Comparing NetCDF and HDF 5 it stands out that the minimum compression speed is
significantly higher with HDF 5 files for all algorithms.
However, the maximum and average compression speeds for NetCDF are higher than
the results for HDF 5.
On average NetCDF files achieve a compression ratio of 9.6282 for all compression
algorithms, in contrast to 1.3365 for HDF 5 files and 39.7949 for “data” files.
As the category “data” gathers all not recognised file types it probably consists of variety
of data types. This would explain why the results vary dramatically.
Only the minimum compression speeds are in the range of the other two file types.

20

The average compression speed of a NetCDF file is 120 435.88 KB/s, 88 690.86 KB/s for
HDF 5 and 227 740.63 KB/s for data.

The three algorithms compressing the fastest while reaching an average compression
ratio larger than one are LZ4, with an average of 153 108.01 KB/s, LZO, with an average
of 136 790.59 KB/s and ZSTD, with an average of 127 906.57 KB/s. The compression
ratio of lrrle for NetCDF and HDF 5 files excludes it from this listing.

Achieving the best compression ratios are bzip2, ZSTD and zlib. This is the expected
result as these are the most complex and advanced algorithms explained in chapter 5.

File type | Algorithm | Min speed Max speed Avg speed | Min ratio | Max ratio | Avg ratio
[KB/S] [KB/S] [KB/S]

NetCDF bzip2 0.5084 9 596.8436 1 304.4447 1.0063 | 1 125.1810 46.3177
NetCDF Irrle 187.1404 5115 687.2201 546 809.3168 1.0000 70.8411 1.4303
NetCDF LZ4 13 011.9220 | 4 965 989.0160 125 688.3335 1.0008 101.8997 3.0378
NetCDF LZ4hc 120.8082 89 956.8810 11 306.3463 1.0006 111.7287 4.0887
NetCDF 1zjb 21 111.1071 821 256.2785 55 502.0381 1.0060 23.7976 1.8452
NetCDF LZO 8 157.3211 | 17 130 322.7726 122 790.5524 1.0004 80.9939 2.6385
NetCDF zlib 49.0263 29 003.5476 2 259.9699 1.0052 181.1000 5.3135
NetCDF 7ZSTD 803.1915 | 3 087 780.1562 97 826.0619 1.0091 360.8429 12.354
HDF 5 bzip2 18.38289 2 465.0011 694.9297 1.0006 7.8612 1.7111
HDF 5 Irrle 2 996.41237 | 1 054 795.9904 300 270.8906 1.0002 1.3948 1.0069
HDF 5 LZ4 36 719.65994 239 926.7591 101 940.3180 1.0093 1.4013 1.1590
HDF 5 LZ4hc 544.26218 9 270.5069 4 759.9255 1.0617 3.1225 1.4858
HDF 5 1zjb 29 089.59437 71 570.2631 59 100.4698 1.1361 1.1790 1.1683
HDF 5 LZO 28 762.35214 177 424.3462 95 057.1175 1.0128 1.5519 1.2742
HDF 5 zlib 80.26969 4 317.7810 1 814.5004 1.0002 4.5370 1.5428
HDF 5 ZSTD 3 125.29032 297 707.1038 145 888.6949 1.0007 4.5214 1.3439
data bzip2 0.1032 24 499.9747 1 436.0667 1.0110 | 49 976.2746 226.4955
data Irrle 1585.3333 | 4 333 859.9793 | 1 106 985.7799 1.0000 | 3 182.5062 28.2917
data LZ4 13 450.3809 | 3 856 405.0082 231 695.3775 1.0063 232.7666 6.7668
data LZ4hc 130.9447 18 698.9368 8 509.7764 1.0003 234.0557 7.2023
data 1zjb 17 732.8867 712 821.0437 137 131.1071 1.0018 30.3450 3.1751
data LZO 11 653.6552 | 1 887 259.8827 192 524.1121 1.0108 208.0836 6.5079
data zlib 38.1979 30 699.6455 3 637.8858 1.0075 793.1625 14.0459
data 7ZSTD 1662.2913 | 3 970 313.2261 140 004.9383 1.0332 | 2 350.2368 25.8739

Table 9.8: Final results: compression speed with a compression ratio > 1

noted per file type and algorithm

For reasons of clarity the decompression results are shown in Table 9.9.
There are no obvious correlations between the decompression speed and the file type.
Both NetCDF and HDF 5 lead to the same value range of a few to several MB/s for the
average decompression speed. Notable is the maximum speed of 1.Z4 and LZO which
exceeds 24 GB/s or even 29 GB/S for NetCDF files. However, the average speed suggests
there are only a few file resulting in this performance.
The best average decompression speed is achieved by lIrrle (712 233.54 KB/s), ZSTD
(267 017.73 KB/s), LZ4HC (247225.84 KB/s) and LZ4 (246804.03 KB/s).

51

File type | Algorithm | Min speed Max speed Avg speed
[KB/S] [KB/S] [KB/S]

NetCDF bzip2 2.5230 46 108.7065 4 768.9714
NetCDF Irrle 0.9878 | 4 447 180.2250 588 431.7359
NetCDF LZ4 2.9634 | 24 571 100.0386 179 510.4468
NetCDF LZ4hc 0.3704 | 2575 962.3226 161 319.8480
NetCDF 1zjb 0.1113 | 3 859 257.0710 52 635.7912
NetCDF LZO 1 249.3883 | 29 530 927.7216 82 316.8694
NetCDF zlib 323.3456 197 489.9113 21 821.2852
NetCDF ZSTD 1 126.8657 | 3 780 169.2320 199 329.0268
HDF 5 bzip2 93.3072 7 298.0868 2 196.5234
HDF 5 Irrle 3092.0426 | 1 119 362.6837 320 294.4575
HDF 5 LZ4 40 578.7325 370 413.2421 188 906.7173
HDF 5 LZ4hc 38 969.3639 295 708.0504 163 954.5274
HDF 5 1zjb 42 648.8031 76 657.9616 58 190.7074
HDF 5 LzZO 5 973.6156 70 546.0887 40 673.1534
HDF 5 zlib 487.8765 44 126.1235 15 293.9213
HDF 5 ZSTD 3 679.1392 951 834.1493 350 095.8926
data bzip2 0.5191 114 229.5162 5117.0319
data Irrle 0.9771 | 4435 393.0738 | 1 227 974.4214
data LZ4 0.3235 | 2 100 796.4188 371 994.9144
data LZ4hc 9 980.8481 | 2 148 036.6783 416 403.1472
data 1zjb 27 862.0433 378 264.4813 136 048.7592
data LZO 1 367.8838 | 1 546 780.6175 173 586.3614
data zlib 250.4454 345 889.4163 47 809.6156
data ZSTD 1 .861.04345 | 4 509 263.3381 251 628.2609

Table 9.9: Final results: decompression speed with a compression ratio > 1
noted per file type and algorithm

Depending on the scenario different algorithms meet the requirements.
The most typical use cases are listed with their main focus highlighted:

o Compression speed,decompression speed: An example is the file system on
the computing nodes of a HPC system. In order to not slow the system’s 1/O down
high compression speed and decompression speed are crucial. When compressing
with a fitting algorithm the 1/O might even increase as less data needs to be
transfered. The decompression speed is important since the data is accessed
regularly.

o Compression ratio: On archival systems the space savings introduced by a high
compression ratio are the main focus.
A high compression speed is rarely of interest as the computing costs are smaller
than the maintenance costs for the archive. Depending on the access frequency a
good decompression speed is useful, too.

LZ4 seems to be a good candidate to be part of the file system which is already
implemented in the ZFS. Its compression and decompression speed with its compression
ratio even allow for a increased 1/0O. ZSTD also offers an impressive compression ratio
making it a sensible option for the first use case as well.

For archival purposes clearly bzip2 is still the most appropriate algorithm with nearly
unrivaled compression ratios.

52

10 Conclusion - Project

The conducted measurement gave insight into the complexity of analysing compression
algorithms.

There are several possible reasons for a certain behaviour. From erroneous implementa-
tions to special features of the analysed data sets many things need to be considered.
Domain knowledge of the specific file types is essential to evaluate which algorithm is
appropriate for the given requirements.

Archiving data introduces different limitations than a file system on a computing node
of a cluster.

LZ4 is an algorithm on the rising. Its high compression and decompression speeds and a
compression ratio often comparable to a Deflate compression ratio make it valuable for a
large range of applications.

Bzip2 is still the algorithm offering the highest compression ratio due to its complex
internal structure.

Not every question raised in the beginning was answered until now.

There is still a lot to find out about the correlation of a specific file type and certain
compression algorithms.

23

Bibliography

[AHCI12] Anisa Al-Hafeedh, Maxime Crochemore, Lucian Ilie, Evguenia Kopylova,

[Ahr14]

[AKSV15]

[Alal5)

[AV]

[Bhul3]
[Ble01]

[Bor09)]

[burl5]

[BW94]

[BY12]

[Cola]

[Colb)

W.F. Smyth, German Tischler, and Munina Yusufu. A Comparison of Index-
based lempel-Ziv LZ77 Factorization Algorithms. ACM Comput. Surv.,
45(1):5:1-5:17, December 2012.

Matthew Ahrens. OpenZFS: a Community of Open Source ZFS Developers.
AsiaBSDCon 2014, page 27, 2014.

Jyrki Alakuijala, Evgenii Kliuchnikov, Zoltan Szabadka, and Lode Vande-
venne. Comparison of Brotli, Deflate, Zopfli, LZMA, LZHAM and Bzip2
Compression Algorithms. Technical report, Google, Inc., September 2015.

Jyrki Alakuijala. Brotli Compressed Data Format. https://datatracker.
ietf.org/doc/rfc7932/, 2015. (last accessed: 2015-11-01).

Jyrki Alakuijala and Lode Vandevenne. Data compression using Zopfli. Tech.
rep. Google Inc., Feb. 2013.

Kul Bhushan. Zopfli: Google’s new data compression algorithm, March 2013.

Guy E Blelloch. Introduction to data compression. Computer Science
Department, Carnegie Mellon University, 2001.

William J Borucki. Kepler: Nasa’s first mission capable of finding earth-size
planets. 2009.

Burrows-Wheeler Transformation. https://de.wikipedia.org/wiki/
Burrows-Wheeler-Transformation, 2015. (last accessed: 2016-08-16).

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, 1994.

MA BASIR and MH YOUSAF. Transparent compression scheme for linux
file system. Nucleus, 49(2):129-137, 2012.

Yann Collet. LZ4 description. http://fastcompression.blogspot.de/p/
1z4.html. (last accessed: 2016-08-02).

Yann Collet. Morphing Match Chain. http://fastcompression.blogspot.
de/p/mmc-morphing-match-chain.html. (last accessed: 2016-08-22).

o4

https://datatracker.ietf.org/doc/rfc7932/
https://datatracker.ietf.org/doc/rfc7932/
https://de.wikipedia.org/wiki/Burrows-Wheeler-Transformation
https://de.wikipedia.org/wiki/Burrows-Wheeler-Transformation
http://fastcompression.blogspot.de/p/lz4.html
http://fastcompression.blogspot.de/p/lz4.html
http://fastcompression.blogspot.de/p/mmc-morphing-match-chain.html
http://fastcompression.blogspot.de/p/mmc-morphing-match-chain.html

[Coll1]

[Coll5]

[Col16]

[Deude]

[EVKV02]

[FMO8]

[Fod02]

[fou]

[Fri04]

[FS96]

[Fucl6]

[GA15]

[Gil04]

Yann Collet. LZ4 explained. http://fastcompression.blogspot.de/
2011/05/1z4-explained.html, March 2011. (last accessed: 2015-11-02).

Yann Collet. Zstandard - A stronger compression algo-
rithm. http://fastcompression.blogspot.de/2015/01/
zstd-stronger-compression-algorithm.html, January 2015. (last

accessed: 2015-05-12).

Yann Collet. Zstandard. http://cyand973.github.io/zstd/, July 2016.
(last accessed: 2016-08-10).

L Peter Deutsch. DEFLATE compressed data format specification version
1.3. https://tools.ietf.org/html/rfc1951, 1996. (last accessed: 2015-
11-01).

M. Effros, K. Visweswariah, S. R. Kulkarni, and S. Verdu. Universal lossless
source coding with the burrows wheeler transform. IFEE Transactions on
Information Theory, 48(5):1061-1081, May 2002.

R. Friend and R. Monsour. IP Payload Compression Using LZS - RFC 2395.
https://tools.ietf.org/html/rfc2395, December 1998. (last accessed:
2016-08-25).

Imola K Fodor. A survey of dimension reduction techniques. Technical
Report UCRL-ID-148494, Lawrence Livermore National Laboratory, 2002.

Fourierreihe. https://de.wikipedia.org/wiki/Fourierreihe. (last ac-
cessed: 2015-11-07).

R. Friend. Transport Layer Security (TLS) Protocol Compression Us-
ing Lempel-Ziv-Stac (LZS) - RFC 3943. https://tools.ietf.org/html/
rfc3943, November 2004. (last accessed: 2016-08-25).

R. Friend and W. Simpson. PPP Stac LZS Compression Protocol - RFC
1974. https://tools.ietf.org/html/rfc1974, August 1996. (last ac-
cessed: 2016-08-25).

Anna Fuchs. Client-Side Data Transformation in Lustre. Master’s thesis,
Universitat Hamburg, 05 2016.

Jean-loup Gailly and Mark Adler. gzip. http://www.gzip.org/algorithm.
txt, 2015. (last accessed: 2015-11-01).

Jeff Gilchrist. Parallel data compression with bzip2. In Proceedings of the 16th
TASTED International Conference on Parallel and Distributed Computing
and Systems, volume 16, pages 559-564, 2004.

95

http://fastcompression.blogspot.de/2011/05/lz4-explained.html
http://fastcompression.blogspot.de/2011/05/lz4-explained.html
http://fastcompression.blogspot.de/2015/01/zstd-stronger-compression-algorithm.html
http://fastcompression.blogspot.de/2015/01/zstd-stronger-compression-algorithm.html
http://cyan4973.github.io/zstd/
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc2395
https://de.wikipedia.org/wiki/Fourierreihe
https://tools.ietf.org/html/rfc3943
https://tools.ietf.org/html/rfc3943
https://tools.ietf.org/html/rfc1974
http://www.gzip.org/algorithm.txt
http://www.gzip.org/algorithm.txt

[GV04]

[HKM+13]

[Kat90]

[KC15

[Kin05]

[Kuh16a]

[Kuh16b]

[LA12]

[Loull]

[Lov04]

[12j16]

[lzw16]

[MBS13]

[Meil3]

Peter Grunwald and Paul Vitanyi. Shannon information and Kolmogorov
complexity. arXiv preprint cs/0410002, 2004.

Danny Harnik, Ronen I Kat, Oded Margalit, Dmitry Sotnikov, and Avishay
Traeger. To Zip or not to Zip: effective resource usage for real-time compres-
sion. In FAST, pages 229-242, 2013.

Phillip W. Katz. Us 5051745 a - zip. https://wuw.google.com/patents/
US5051745, August 1990. (last accessed: 2016-08-26).

Per Karlsen and Lasse Collin. LZMA. http://sourceforge.net/projects/
lzmautils/, 2015. (last accessed: 2015-11-01).

Kingsley G. Morse. Compression Tools Compared. http://www.
linuxjournal.com/node/8051/print, September 2005. (last accessed:
2016-08-25).

Michael Kuhn. Datenreduktion. http://wr.informatik.uni-hamburg.de/
_media/teaching/sommersemester_2016/hea-16-datenreduktion.pdf,
June 2016. (last accessed: 2016-08-16).

Michael Kuhn. Moderne Dateisysteme. http://wr.informatik.
uni-hamburg.de/_media/teaching/sommersemester_2016/
hea-16-moderne-dateisysteme.pdf, April 2016. (last accessed: 2016-08-
16).

R. Lenhardt and J. Alakuijala. Gipfeli - High Speed Compression Algorithm.
In Data Compression Conference (DCC), 2012, pages 109-118, April 2012.

Phillip Lougher. SquashFS. http://squashfs.sourceforge.net/, Febru-
ary 2011. (last accessed: 2016-08-16).

Robert M. Love. taskset(1) - linux man page. https://linux.die.net/
man/1/taskset, November 2004. (last accessed: 2016-11-09).

LZJB. https://en.wikipedia.org/wiki/LZJB, June 2016. (last accessed:
2016-08-25).

Lempel-Ziv-Welch-Algorithmus. https://de.wikipedia.org/wiki/
Lempel-Ziv-Welch-Algorithmus, January 2016. (last accessed: 2016-08-
25).

Dirk Meister, André Brinkmann, and Tim Suf3. File recipe compression in
data deduplication systems. In FAST, pages 175-182, 2013.

Dirk Meister. Advanced data deduplication techniques and their application.
PhD thesis, Universitatsbibliothek Mainz, 2013.

26

https://www.google.com/patents/US5051745
https://www.google.com/patents/US5051745
http://sourceforge.net/projects/lzmautils/
http://sourceforge.net/projects/lzmautils/
http://www.linuxjournal.com/node/8051/print
http://www.linuxjournal.com/node/8051/print
http://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/hea-16-datenreduktion.pdf
http://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/hea-16-datenreduktion.pdf
http://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/hea-16-moderne-dateisysteme.pdf
http://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/hea-16-moderne-dateisysteme.pdf
http://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/hea-16-moderne-dateisysteme.pdf
http://squashfs.sourceforge.net/
https://linux.die.net/man/1/taskset
https://linux.die.net/man/1/taskset
https://en.wikipedia.org/wiki/LZJB
https://de.wikipedia.org/wiki/Lempel-Ziv-Welch-Algorithmus
https://de.wikipedia.org/wiki/Lempel-Ziv-Welch-Algorithmus

IMKB*12] Dirk Meister, Jirgen Kaiser, Andre Brinkmann, Toni Cortes, Michael Kuhn,

[mov15]

[MZSUOS]

INGTJOS]

[PK15]

[Rus69]

[Sai04]

[sev]
[Sew10]
[SF96]

[SS82]

[TAN15]

[TGB*+13]

and Julian Kunkel. A study on data deduplication in HPC storage systems. In
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, page 7. IEEE Computer Society Press,
2012.

Move-to-front. https://de.wikipedia.org/wiki/Move_to_front, 2015.
(last accessed: 2016-08-16).

Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep Uttam-
chandani. Demystifying Data Deduplication. In Proceedings of the ACM/I-
FIP/USENIX Middleware '08 Conference Companion, Companion '08, pages
12-17, New York, NY, USA, 2008. ACM.

Emily Namey, Greg Guest, Lucy Thairu, and Laura Johnson. Data reduction
techniques for large qualitative data sets. Handbook for team-based qualitative
research, pages 137-161, 2008.

Prabhat and Quincey Koziol, editors. High performance parallel 1/0. CRC
Press, 2015.

Enrique H Ruspini. A new approach to clustering. Information and control,
15(1):22-32, 1969.

Amir Said. Introduction to arithmetic coding-theory and practice. Hewlett
Packard Laboratories Report, 2004.

Seven zip, LZMA. . (last accessed: 2016-08-12).
Julian Seward. Bzip2, September 2010.

K. Schneider and R. Friend. PPP LZS-DCP Compression Protocol (LZS-
DCP) RFC 1967. https://tools.ietf.org/html/rfc1967, August 1996.
(last accessed: 2016-08-25).

James A. Storer and Thomas G. Szymanski. Data Compression via Textual
Substitution. J. ACM, 29(4):928-951, October 1982.

Zaid Bin Tariq, Naveed Arshad, and Muhammad Nabeel. Enhanced LZMA
and BZIP2 for improved energy data compression. In Smart Cities and
Green ICT Systems (SMARTGREENS), 2015 International Conference on,
pages 1-8, May 2015.

S. J. Tingay, R. Goeke, J. D. Bowman, D. Emrich, S. M. Ord, D. A. Mitchell,
M. F. Morales, T. Booler, B. Crosse, R. B. Wayth, C. J. Lonsdale, S. Tremblay,
D. Pallot, T. Colegate, A. Wicenec, N. Kudryavtseva, W. Arcus, D. Barnes,
G. Bernardi, F. Briggs, S. Burns, J. D. Bunton, R. J. Cappallo, B. E. Corey,
A. Deshpande, L. Desouza, B. M. Gaensler, L. J. Greenhill, P. J. Hall, B. J.

o7

https://de.wikipedia.org/wiki/Move_to_front
https://tools.ietf.org/html/rfc1967

[usel6]

[Wel85]

[WGHV11]

[Wil91]

[ZL77]

Hazelton, D. Herne, J. N. Hewitt, M. Johnston-Hollitt, D. L. Kaplan, J. C.
Kasper, B. B. Kincaid, R. Koenig, E. Kratzenberg, M. J. Lynch, B. Mckinley,
S. R. Mcwhirter, E. Morgan, D. Oberoi, J. Pathikulangara, T. Prabu, R. A.
Remillard, A. E. E. Rogers, A. Roshi, J. E. Salah, R. J. Sault, N. Udaya-
Shankar, F. Schlagenhaufer, K. S. Srivani, J. Stevens, R. Subrahmanyan,
M. Waterson, R. L. Webster, A. R. Whitney, A. Williams, C. L. Williams,
and J. S. B. Wyithe. The Murchison Widefield Array: The Square Kilometre
Array Precursor at Low Radio Frequencies. PASA - Publications of the
Astronomical Society of Australia, 30, 2013.

Can i use brotli? http://caniuse.com/#search=brotli, July 2016. (last
accessed: 2016-08-27).

Terry Welch. High speed data compression and decompression apparatus
and method. https://worldwide.espacenet.com/publicationDetails/
biblio?FT=D&date=19851210&DB=&1locale=de EP&CC=US&NR=4558302A&
KC=A&ND=2, October 1985. (last accessed: 2016-08-25).

Andreas Wicenec, Derek K Gerstmann, Christopher Harris, and Kevin
Vinsen. Integrating HPC into Radio-Astronomical data reduction. In General
Assembly and Scientific Symposium, 2011 XXXth URSI, pages 1-1. IEEE,
2011.

R. N. Williams. An extremely fast Ziv-Lempel data compression algorithm.
In Data Compression Conference, 1991. DCC ’91., pages 362-371, April
1991.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. I[EEE Transactions on information theory, 23(3):337-343, 1977.

o8

http://caniuse.com/#search=brotli
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19851210&DB=&locale=de_EP&CC=US&NR=4558302A&KC=A&ND=2
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19851210&DB=&locale=de_EP&CC=US&NR=4558302A&KC=A&ND=2
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19851210&DB=&locale=de_EP&CC=US&NR=4558302A&KC=A&ND=2

Acronyms

ADIOS Adaptable I/O System. 31
ANSI| American National Standards Institute. 27

ASCIl American Standard Code for Information Interchange. 41

BST Binary Search Tree. 28

BWT Burrows-Wheeler Transform. 17
CPU Central Processing Unit. 39
EXT Extended File System. 24

FORTRAN Formula Translation. 41

FSE Finiste State Entropy Encoder. 29

HDF Hierarchical Data Format 5. 43

HPC High Performance Computing. 2, 6

1/0 Input and Output. 2

ISOBAR In-Situ Orthogonal Byte Aggregated Reduction. 31

LZ Lempel-Ziv. 2

LZ4 Lempel-Ziv 4. 28, 40

LZ77 Lempel-Ziv 1977. 24-28, 32

LZ78 Lempel-Ziv 1978. 25

LZJB Lempel-Ziv Jeff Bonwick. 28, 40
LZMA Lempel-Ziv Markov Algorithm. 28
LZO Lempel-Ziv Oberhumer. 27, 40
LZRW Lempel-Ziv Ross Williams. 27

29

LZRW1 Lempel-Ziv Ross Welch 1. 28
LZS Lempel-Ziv Stac. 27
LZSS Lempel-Ziv Storer and Szymanski. 26

LZW Lempel-Ziv Welch. 26

MMC Morphing Match Chain. 28

MTF Move-To-Front transform. 16
NetCDF Network Common Data Form. 43

PDF Portable Data Format. 41

POWER Performance Optimization With Enhanced Risc. 11

RFC Request For Comments. 27, 29

RLE Run Length Encoding. 2, 15

SHA256 Secure Hash Algorithm 256. 11

SKA Square Kilometre Array. 7, 10
UTF-8 Unicode Transformation Format 8 bit. 41

ZFS Zettabyte File System. 2, 6, 23, 28
ZLE Zero Length Encoding. 16

ZLIB . 40

ZSTD Zstandard. 2, 40

60

List of Figures

3.1

4.1
4.2
4.3

9.1

Rectangular pulse and approximating Fourier series [fou] 9
Huffman prefix tree L 15
Entropy - compressibility relation [HKM™13, p. 8] 19
Based on IBM heuristics to detect incompressible data 21
Avg. compression speed - avg. compression ratio 48

61

List of Tables

4.1
4.2
4.3
4.4

5.1
5.2
5.3

8.1

9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8

9.9

Two possible Huffman codes
Move-to-front encoding oo
Move-to-front decoding L
Burrows-Wheeler transformation

LZ77 . . e
An example for LZWo
Performance of Brotli, Deflate and bzip2 on three different data sets . . .

Evaluation of available algorithms on test dataset

Used hardware
Minimum, maximum, average for compression speed, compression ratio

and decompression speed o
Percentage of increase files per algorithm
File types and their compression ratio
Average file size per file type with compression ratio <1
Number of files reaching specific compression ratios per file type
Number of files reaching specific compression ratios per algorithm
Final results: compression speed with a compression ratio > 1 noted per

file type and algorithm Lo
Final results: decompression speed with a compression ratio > 1 noted

per file type and algorithmo

62

Listings

4.1
4.2
4.3
4.4

5.1

8.1
8.2
8.3

Huffman prefix-tree algorithm 14
MTF algorithm 16
Burrows-Wheeler transformation 0000 18
Algorithm to estimate compressibility 20
LZW Algorithm (taken from [lzwl6]) 27
FSBench o 39
File type o 40
Python 40

63

	Foreword
	Introduction - Seminar
	Different data reduction techniques
	Mathematical Operations
	Deduplication
	Recomputation

	Information theory and probability codes
	Entropy
	Kolmogorov complexity
	Probability codes
	Prefix codes
	Huffman codes
	Run-length encoding
	Move-to-front transform

	Burrows-Wheeler transformation
	Compressibility
	Prefix estimation
	Heuristic based estimation

	Compression algorithms
	LZ-Family
	Deflate
	Algorithms by Google
	Gipfeli
	Brotli

	bzip2 and pbzip2

	Conclusion - Seminar
	Introduction - Project
	Design, Implementation, Problems
	Current state of the programm
	fsbench
	Python
	Database scheme

	Selection of the evaluated algorithms
	Encountered problems

	Measurements and evaluation metrics
	Conclusion - Project
	Bibliography
	Acronyms
	List of Figures
	List of Tables
	Listings

