Data Models \& Processing and Statistics
 Lecture BigData Analytics

Julian M. Kunkel
julian.kunkel@googlemail.com
University of Hamburg / German Climate Computing Center (DKRZ)
16-10-2015

Outline

1 Data: Terminology

2 Data Models \& Processing

3 Technology

4 Descriptive Statistics
5 Inductive Statistics

6 Summary

Basic Considerations About Storing Big Data

■ New data is constantly coming (Velocity of Big Data)
■ How can we update our derived data (and conclusions)?

- Incremental updates vs. (partly) re-computation algorithms

■ How can we ingest the data?
■ Storage and data management techniques are needed
\square How can we diagnose causes for problems with data (e.g. inaccuracies)?
■ Efficient processing of data is key for analysis

Management of data

■ Idea: Store facts (truth) and never change/delete them

- Data value may degrade over time, garbage clean old data

■ Raw data is usually considered to be immutable
■ Implies that an update of (raw) data is not necessary

- Create a model for representing the data

Terminology

Data [1, 10]
■ Raw data: collected information that is not derived from other data

- Derived data: data produced with some computation/functions

■ View: presents derived data to answer specific questions
■ Convenient for users (only see what you need) + faster than re-computation
■ Convenient for administration (e.g. manage permissions)
■ Data access can be optimized

Dealing with unstructured data
■ We need to extract information from raw unstructured data

- e.g. perform text-processing using techniques from computer linguistics
- Semantic normalization is the process of reshaping free-form information into a structured form of data [11]
■ Store raw data when your processing algorithm improves over time

Terminology for Managing Data [1, 10]

■ Data life cycle: creation, distribution, use, maintenance \& disposition

- Information lifecycle management (ILM): business term; practices, tools and policies to manage the data life cycle in a cost-effective way
■ Data governance: "control that ensures that the data entry ... meets precise standards such as business rule, a data definition and data integrity constraints in the data model" [10]
■ Data provenance: the documentation of input, transformations of data and involved systems to support analysis, tracing and reproducibility
■ Data-lineage (Datenherkunft): forensics; allows to identify the source data used to generate data products (part of data provenance)
■ Service level agreements (SLAs): contract defining quality, e.g. performance/reliability \& responsibilities between service user/provider

Data-Cleaning and Ingestion

- Importing of raw data into a big data system is an important process

■ Wrong data results in wrong conclusions: Garbage in - Garbage out
■ Data wrangling: process and procedures to clean and convert data from one format to another [1]

■ Data extraction: identify relevant data sets and extract raw data
■ Data munging: cleaning raw data, converting it to a format for consumption
■ Extract, Transform, Load (ETL process): data warehouse term for importing data (from databases) into a data warehouse

Necessary steps

■ Define and document data governance policies to ensure data quality
■ Identifying and dealing with duplicates, time(stamp) synchronization
■ Handling of missing values (NULL or replace them with default values)
■ Document the conducted transformations (for data provenance)
■ Data sources
■ Conversions of data types, complex transformations
■ Extraction of information from unstructured data (semantic normalization)
■ Implementation of the procedures for bulk loading and cleaning of data

Datawarehousing ETL Process

■ Extract: read data from source databases

- Transform

■ Perform quality control

- Improve quality: treat errors and uncertainty

■ Change the layout to fit the data warehouse

- Load: integrate the data into the data warehouse

■ Restructure data to fit needs of business users

- Rely on batch integration of large quantities of data

2 Data Models \& Processing

- Data Model
- Process Model

■ Domain-specific Language
■ Overview of Data Models

- Semantics
- Columnar Model
- Key-Value Store

■ Document Model

3 Technology

4 Descriptive Statistics

5 Inductive Statistics

Data Models ${ }^{1}$ and their Instances [12]

- A data model describes how information is organized in a system

■ It is a tool to specify, access and process information

- A model provide operations for accessing and manipulating data that follow certain semantics
■ Typical information is some kind of entity (virtual object) e.g. car, article

■ Logical model: abstraction expressing objects and operations

- Physical model: maps logical structures onto hardware resources (e.g. Files, bytes)

■ DM theory: Formal methods for describing data models with tool support

- Applying theory creates a data model instance for a specific application

[^0]
Process Models [13]

■ Models describing processes
■ Process: "A series of events to produce a result, especially as contrasted to product." [15]
■ Qualities of descriptions
■ Descriptive: Describe the events that occur during the process

- Prescriptive
- Define the intended process and how it is executed
- Rules and guideliness steering the process
- Explanatory
- Provide rationales for the process

■ Describe requirements

- Establish links between processes

Programming Paradigms [14]

Programming paradigms are process models for computation

■ Fundamental style and abstraction level for computer programming
■ Imperative (e.g. Procedural)
■ Declarative (e.g. Functional, Dataflow, Logic)
■ Data-driven programming (describe patterns and transformations)
■ Multi-paradigm supporting several (e.g. SQL, Scala)
■ There are many paradigms with tools support available
■ Parallelism is an important aspect for processing of large data
■ In HPC, there are language extensions, libraries to specify parallelism
■ PGAS, Message Passing, OpenMP, data flow e.g. OmpSs, ...
■ In BigData Analytics, libraries and domain-specific languages

- MapReduce, SQL, data-flow, streaming and data-driven

Domain-specific Language (DSL)

■ Specialized programming language to an application domain
■ Mathematics e.g. statistics, modelling
■ Description of graphs e.g. graphviz (dot)
■ Processing of big data

- A contrast to general-purpose languages (GPL)

■ Standalone vs. embedded
■ Embedding into a GPL (e.g. regex, SQL) with library support
■ Standalone requires to provide its own toolchain (e.g. compiler)
■ Source-to-source compilation (DSL to GPL) an alternative
■ High-level of abstraction or low-level
■ Low-level: includes technical details (e.g. about hardware)

Selection of Theory (concepts) for Data Models

■ I/O Middelware: NetCDF, HDF5, ADIOS
■ Relational model (tuples and tables)
■ e.g. can be physically stored in a CSV file or database
■ Relational model + raster data
■ Operations for N -dimensional data (e.g. pictures, scientific data)

- NoSQL data models: Not only SQL², lacks features of databases
- Column

■ Document
■ Key-value

- Named graph

■ Fact-based: built on top of atomic facts, well-suited for BI [11]

Data modeling [10]

The process in software-engineering of creating a data model instance for an information system

[^1]
Semantics

- Describes operations and their behavior

■ Application programming interface (API)
■ Concurrency: Behavior of simultaneously executed operations

- Atomicity: Are partial modifications visible to other clients
- Visibility: When are changes visible to other clients

■ Isolation: Are operations influencing other ongoing operations
■ Availability: Readiness to serve operations
■ Robustness of the system for typical (hardware and software) errors

- (Scalability: availability and performance behavior with number of requests)

■ Partition tolerance: Continue to operate even if network breaks partially
■ Durability: Modifications should be stored on persistent storage

- Consistency: Any operation leaves a consistent system

CAP-Theorem

It is not possible to fulfill all three attributes in a distributed system:
■ Consistency (here: immediate visibility of changes among all clients)
■ Availability (we'll receive a response for every request)
■ Partition tolerance (system operates despite network failures)

Example Semantics

POSIX I/O
■ Atomicity and isolation for individual operations, locking possible ACID

- Atomicity, consistency, isolation and durability for transactions

■ Strict semantics for database systems to prevent data loss
BASE

- BASE is a typical semantics for Big Data due to the CAP theorem

■ Basically Available replicated Soft state with Eventual consistency[26]

■ Availability: Always serve but may return a failure, retry may be needed
■ Soft state: State of the system may change over time without requests due to eventual consistency
■ Consistency: If no updates are made any more, the last state usually becomes visible to all clients
■ Big data solutions often exploit the immutability of data

Columnar Model

■ Data is stored in rows and "columns" (evtl. tables)

- A column is a tuple (name, value and timestamp)
- Each row can contain other columns

■ Columns can store complex objects e.g. collections
■ Examples: HBase, Cassandra, Accumulo

Row/Column:	student name	matrikel	lectures	lecture name
1	"Max Mustermann"	4711	$[3]$	-
2	"Nina Musterfrau"	4712	$[3,4]$	-
3	-	-	-	"Big Data Analytics"
4	-	-	-	"Hochleistungsrechnen"

Table: Example columnar model for the students, each value has its own timestamp (not shown). Note that lectures and students should be modeled with two tables

Key-Value Store

- Data is stored as value and addressed by a key

■ The value can be complex objects e.g. JSON or collections
■ Keys can be forged to simplify lookup evtl. tables with names
■ Examples: CouchDB, BerkeleyDB, Memcached, BigTable

Key	Value
stud/4711	<name>Max Mustermann</name><attended><id>1</id></attended> $>$
stud/4712	<name>Nina Musterfrau</name><attended><id>1</id><id>2</id></attended>
lec/1	<name>Big Data Analytics</name>
lec/2	<name>Hochleistungsrechnen</name>

Table: Example key-value model for the students with embedded XML

Document Model

■ Documents contain semi-structured data (JSON, XML)
■ Each document can contain data with other structures

- Addressing to lookup documents are implementation specific
- e.g. bucket/document key, (sub) collections, hierarchical namespace
- References between documents are possible

■ Examples: MongoDB, Couchbase, DocumentDB

```
<students>
    <student><name>Max Mustermann</name><matrikel>4711</matrikel>
        <lecturesAttended><id>1</id></lecturesAttended>
    </student>
    <student><name>Nina Musterfrau</name><matrikel>4712</matrikel>
        <lecturesAttended><id>1</id><id>2</id></lecturesAttended>
    </student>
</students>
```

Table: Example XML document storing students. Using a bucket/key namespace, the document could be addressed with key: "uni/stud" in the bucket "app1"

Graph

■ Entities are stored as nodes and relations as edges in the graph
■ Properties/Attributes provide additional information as key/value
■ Examples: Neo4J, InfiniteGraph

Figure: Graph representing the students (attributes are not shown)

Relational Model [10]

■ Database model based on first-order predicate logic
■ Theoretic foundations: relational algebra and relational calculus
■ Data is represented as tuples

- Relation/Table: groups tuples with similar semantics

■ Table consists of rows and named columns (attributes)
■ No duplicates of complete rows allowed

- In its raw style no support for collections in tuples

■ Schema: specify structure of tables

- Datatypes (domain of attributes)

■ Consistency via constraints
■ Organization and optimizations

Tuple (Row) \{unordered\}
Figure: Source: Relational model concepts [11]

Example Relational Model for Students Data

\author{

Matrikel	Name	Birthday
242	Hans	22.04 .1955
245	Fritz	24.05 .1995

}

ID	Name
1	Big Data Analytics
2	Hochleistungsrechnen

Table: Lecture table

Fact-Based Model [11] ${ }^{4}$

■ Store raw data as timestamped atomic facts
■ Never delete true facts: Immutable data
■ Make individual facts unique to prevent duplicates
Example: social web page

- Record all changes to user profiles as facts
- Benefits

■ Allows reconstruction of the profile state at any time

- Can be queried at any time ${ }^{3}$

Example: purchases

■ Record each item purchase as facts together with location, time, ...

[^2]
1 Data: Terminology

2 Data Models \& Processing

3 Technology
■ Requirements
■ Technology

4 Descriptive Statistics

5 Inductive Statistics

6 Summary

Wishlist for Big Data Technology [11]

■ High-availability, fault-tolerance
■ (Linear) Scalability

- i.e. $2 n$ servers handle $2 n$ the data volume + same processing time

■ Real-time data processing capabilities (interactive)

- Up-to-date data

■ Extensible, i.e. easy to introduce new features and data

- Simple programming models
- Debuggability

■ (Cheap \& ready for the cloud)
\Rightarrow Technology works with TCP/IP

Components for Big Data Analytics

Required components for a big data system
■ Servers, storage, processing capabilities
■ User interfaces

Storage

■ NoSQL databases are non-relational, distributed and scale-out

- Hadoop Distributed File System (HDFS)
- Cassandra, CouchDB, BigTable, MongoDB ${ }^{5}$

■ Data Warehouses are useful for well known and repeated analysis

Processing capabilities

- Interactive processing is difficult

■ Available technology offers
■ Batch processing
■ "Real-time" processing (seconds to minutes turnaround)

[^3]
Alternative Processing Technology

Figure: Source: Forrester Webinar. Big Data: Gold Rush Or Illusion? [4]

The Hadoop Ecosystem (of the Hortonworks Distribution)

Figure: Source: [20]

The Lambda Architecture [11]

■ Goal: Interactive Processing
■ Batch layer pre-processes data
■ Master dataset is immutable/never changed
■ Operations are periodically performed

- Serving layer offers performance optimized views

■ Speed layer serves deltas between batch and recent activities

■ Robust: Errors/inaccuracies of realtime views are corrected in batch view

Figure: Redrawn figure. Source: [11], Fig. 2.1

1 Data: Terminology

2 Data Models \& Processing

3 Technology

4 Descriptive Statistics
■ Overview

- Example Dataset
- Distribution of Values
- Correlation

5 Inductive Statistics

Statistics: Overview

Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data [21]
Either describe properties of a sample or infer properties of a population Important terms [10]

■ Unit of observation: the entity described by the data

- Unit of analysis: the major entity that is being analyzed

■ Example: observe income of each person, analyse differences of countries
■ Statistical population: complete set of items that share at least one property that is subject of analysis

■ Subpopulation share additional properties
■ Sample: (sub)set of data collected and/or selected from a population
■ If chosen properly, they can represent the population
■ There are many sampling methods, we can never capture ALL items
■ Independence: one observation does not effect another
■ Example: Select two people living in Germany randomly
■ Dependent: select one household and pick married couple

Statistics: Variables

■ Dependent variable: represents the output/effect
■ Example: Word count of a Wikipedia article; income of people
■ Independent variable: assumed input/cause/explanation
■ Example: Number of sentences; age, educational level
■ Univariate analysis looks at a single variable
■ Bivariate analysis describes/analyze relationships between two variables

■ Multivariate statistics: analyze/observe multiple dependent variables
■ Example: chemicals in the blood stream of people, chance for cancers Independent variables are personal information / habits

Descriptive Statistics [10]

- The discipline of quantitatively describing main features of sampled data
- Summarize observations/selected samples

■ Exploratory data analysis (EDA): approach for inspecting data
■ Using different chart types, e.g. Box plots, histograms, scatter plot
■ Methods for Univariate analysis
■ Distribution of values, e.g. mean, variance, quantiles
■ Probability distribution and density
■ t-test (e.g. check if data is t-distributed)

- Methods for Bivariate analysis

■ Correlation coefficient ${ }^{6}$ describes linear relationship
■ Rank correlation ${ }^{7}$: extent by which one variable increases with another var
■ Methods for Multivariate analysis
■ Principal component analysis (PCA) converts correlated variables into linearly uncorrelated variables called principal components

[^4]
Example Dataset: Iris Flower Data Set

- Contains information about iris flower

■ Three species: Iris Setosa, Iris Virginica, Iris Versicolor
■ Data: Sepal.length, Sepal.width, Petal.length, Petal.width

R example

```
> data(iris) # load iris data
> summary(iris)
Sepal.Length Sepal.Width Petal.Length
Min. :4.300 Min. :2.000 Min. :1.000
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
Median :5.800 Median :3.000 Median :4.350
Mean :5.843 Mean :3.057 Mean :3.758
Mrd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
Mrd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
Petal.Width Species
Min. :0.100 setosa :50
1st Qu.:0.300 versicolor:50
Median :1.300 virginica :50
Mean :1.199
3rd Qu.:1.800
Max. :2.500
# Draw a matrix of all variables
> plot(iris[,1:4], col=iris$Species)
```


Figure: R plot of the iris data

Distribution of Values: Histograms [10]

■ Distribution: frequency of outcomes (values) in a sample
■ Example: Species in the Iris data set

- setosa: 50

■ versicolor: 50

- virginica: 50

■ Histogram: graphical representation of the distribution
■ Partition observed values into bins
■ Count number of occurrences in each bin
■ It is an estimate for the probability distribution

R example

```
# nclass specifies the number of bins
# by default, hist uses equidistant bins
hist(iris$Petal.Length, nclass=10, main="")
hist(iris$Petal.Length, nclass=25, main=" ")
```


iris\$Petal.Length

iris\$Petal.Length

Figure: Histograms with 10 and 25 bins

Distribution of Values: Density [10]

- Probability density function (density):

■ Likelihood for a continuous variable to take on a given value
■ Kernel density estimation (KDE) approximates the density

R example

```
# The kernel density estimator moves a function (kernel) in a window across samples
# With bw="SJ" or nrd it automatically determines the bandwidth i.e. window size
d = density(iris$Petal.Length, bw="SJ", kernel="gaussian")
plot(d, main="")
```


Figure: Density estimation of Petal.Length

Distribution of Values: Quantiles [10]

■ Percentile: value below which a given percentage of observations fall
■ q-Quantiles: values that partition a ranked set into q equal sized subsets
■ Quartiles: three data points that split a ranked set into four equal points
■ Q1=P(25), Q2=median=P(50), Q3=P(75), interquartile range iqr=Q3-Q1
■ Boxplot: shows quartiles (Q1,Q2,Q3) and whiskers
■ Whiskers extend to values up to 1.5 iqr from Q1 and Q3
■ Outliers are outside of whiskers

R example

```
> boxplot(iris, range=1.5) # 1.5 interquartile range
> d = iris$Sepal.Width
> quantile(d)
    0% 25% 50% 75% 100%
2.0
> q3 = quantile(d,0.75) # pick value below which are 75%
> q1 = quantile(d,0.25)
> irq = (q3 - q1)
# identify all outliers based on the interquartile range
> mask = d < (q1 - 1.5*irq) | d > (q3 + 1.5*irq)
# pick outlier selection from full data set
> 0 = iris[mask,]
# draw the species name into the boxplot
> text(rep(1.5,nrow(o)), o$Sepal.Width, o$Species,
    col=as.numeric(o$Species))
```


Density Plot Including Summary

```
d = density(iris$Petal.Length, bw="SJ",
    ckrnel="gaussian")
# add space for two axes
par(mar=c(5, 4, 4, 6) + 0.1)
plot(d, main="")
# draw lines for Q1, Q2, Q3
q = quantile(iris$Petal.Length)
q = c(q, mean(iris$Petal.Length))
abline(v=q[1], lty=2, col="green", lwd=2)
abline(v=q[2], lty=3, col="blue", lwd=2)
abline(v=q[3], lty=3, col="red", lwd=3)
abline(v=q[4], lty=3, col="blue", lwd=2)
abline(v=q[5], lty=2, col="green", lwd=2)
abline(v=q[6], lty=4, col="black", lwd=2)
# Add titles
text(q, rep(-0.01, 5), c("min", "Q1", "median",
    \hookrightarrow "Q3", "max", "mean"))
# identify x limits
xlim = par("usr")[1:2]
par(new=TRUE)
# Empirical cummulative distribution function
e = ecdf(iris$Petal.Length)
plot(e, col="blue", axes=FALSE, xlim=xlim, ylab="",
    \hookrightarrow xlab="", main="")
axis(4, ylim=c(0,1.0), col="blue")
mtext("Cummulative distribution function", side=4,
    line=2.5)
```


Figure: Density estimation with 5-number summary and cumulative density function

Correlation Coefficients

■ Measures (linear) correlation between two variables
■ Value between -1 and +1
■ >0.7: strong positive correlation
■ >0.2: weak positive correlation
■ 0: no correlation, < 0: negative correlation

R example

```
library(corrplot)
d = iris
d$Species = as.numeric(d$Species)
corrplot(cor(d), method = "circle") # linear correlation
mplot = function(x,y, name) {
    pdf(name,width=5,height=5) # plot into a PDF
    p = cor(x,y, method="pearson") # compute correlation
    k = cor(x,y, method="spearman")
    plot(x,y, xlab=sprintf("x\n cor. coeff: %.2f rank coef.:
        %.2f", p, k))
    dev.off()
}
mplot(iris$Petal.Length, iris$Petal.Width, "iris-corr.pdf")
# cor. coeff: 0.96 rank coef.: 0.94
x = 1:10; y = c(1,3,2,5,4,7,6,9,8,10)
mplot(x,y, "linear.pdf") # cor. coeff: 0.95 rank coef.: 0.95
mplot(x, x*X*x , "x3.pdf") # cor. coeff: 0.93 rank coef.: 1
```


Example Correlations for X, Y Plots

Figure: Correlations for x, y plots; Source: [22]

1 Data: Terminology

2 Data Models \& Processing

3 Technology

4 Descriptive Statistics

5 Inductive Statistics
■ Overview
■ Linear Models

- Time Series

Inductive Statistics: Some Terminology [10]

- Statistical inference is the process of deducting properties of a population by analyzing samples

■ Build a statistical model and test the hypothesis if it applies
■ Allows to deduct propositions (statements about data properties)
■ Statistical hypothesis: hypothesis that is testable on a process modeled via a set of random variables

■ Statistical model: embodies a set of assumptions concerning the generation of the observed data, and similar data from a larger population. A model represents, often in considerably idealized form, the data-generating process

■ Validation: Process to verify that a model/hypothesis is likely to represent the observation/population

■ Significance: A significant finding is one that is determined (statistically) to be very unlikely to happen by chance

■ Residual: difference of observation and estimated/predicted value

Statistics: Inductive Statistics [10]

Testing process

1 Formulate default (null ${ }^{8}$) and alternative hypothesis
2 Formulate statistical assumptions e.g. independence of variables
3 Decide which statistical tests can be applied to disprove null hypothesis
4 Choose significance level α for wrongly rejecting null hypothesis
5 Compute test results, especially the p-value ${ }^{9}$
6 If p -value $<\alpha$, then reject null hypothesis and go for alternative

- Be careful: (p -value $\geq \alpha$) \nRightarrow null hypothesis is true, though it may be

Example hypotheses

- Petal.Width of each iris flowers species follow a normal distribution

■ Waiting time of a supermarket checkout queue is gamma distributed

[^5]
Checking if Petal.Width is Normal Distributed

R example

```
# The Shapiro-Wilk-Test allows for testing if a population represented by a sample is normal distributed
# The Null-hypothesis claims that data is normal distributed
# Let us check for the full population
> shapiro.test(iris$Petal.Width)
# W = 0.9018, p-value = 1.68e-08
# Value is almost 0, thus reject null hypothesis =>
# In the full population, Petal.Width is not normal distributed
# Maybe the Petal.Width is normal distributed for individual species?
for (spec in levels(iris$Species)){
    print(spec)
    y = iris[iris$Species==spec,]
    # Shapiro-Wilk-test checks if data is normal distributed
    print(shapiro.test(y$Petal.Width))
}
[1] "virginica"
W=0.9598, p-value = 0.08695
# Small p-value means a low chance this happens, here about 8.7%
# With the typical significance level of 0.05 Petal.Width is normal distributed
# For simplicitly, we may now assume Petal.Width is normal distributed for this species
[1] "setosa"
W = 0.7998, p-value = 8.659e-07 # it is not normal distributed
[1] "versicolor"
W=0.9476, p-value = 0.02728 # still too unlikely to be normal distributed
```


Linear Models (for Regression) [10]

■ Linear regression: Modeling the relationship between dependent var Y and explanatory variables X_{i}

- Assume n samples are observed with their values in the tuples ($Y_{i}, X_{i 1}, \ldots, X_{i p}$)
- Y_{i} is the dependent variable (label)
- $X_{i j}$ are independent variables
- Assumption for linear models: normal distributed variables

■ A linear regression model fits $Y_{i}=c_{0}+c_{1} \cdot f_{1}\left(X_{i 1}\right)+\ldots+c_{p} \cdot f_{p}\left(X_{i p}\right)+\epsilon_{i}$

- Determine coefficients c_{0} to c_{p} to minimize the error term ϵ
- The functions f_{i} can be non-linear

R example

```
# R allows to define equations, here Petal.Width is our dependent var
m = lm("Petal.Width ~ Petal.Length + Sepal.Width", data=iris)
print(m) # print coefficients
# (Intercept) Petal.Length Sepal.Width
# -0.7065 0.4263 0.0994
# So Petal.Width = -0.7065 + 0.4263 * Petal.Length + 0.0994 * Sepal.Width
```


Compare Prediction with Observation

Figure: Iris linear model

Figure: With sorted data

```
# Predict petal.width for a given petal.length and sepal.width
d = predict(m, iris)
# Add prediction to our data frame
iris$prediction = d
# Plot the differences
plot(iris$Petal.Width, col="black")
points(iris$prediction, col=rgb(1,0,0,alpha=0.8))
# Sort observations
d = iris[sort(iris$Petal.Width, index.return=TRUE)$ix,]
plot(d$Petal.Width, col="black")
points(d$prediction, col=rgb(1,0,0,alpha=0.8))
```


Analysing Model Accuracy [23]

■ Std. error of the estimate: variability of c_{i}, should be lower than c_{i}
■ t-value: Measures how useful a variable is for the model
$■ \operatorname{Pr}(>|t|)$ two-sided p-value: probability that the variable is not significant
■ Degrees of freedom: number of independent samples (avoid overfitting!)
■ R-squared: Fraction of variance explained by the model, 1 is optimal
■ F-statistic: the f-test analyses the model goodness - high value is good

```
summary(m) # Provide detailed information about the model
# Residuals:
# Mrrrrrer
# Coefficients:
\begin{tabular}{lrcccl} 
\# & Estimate & Std.Error t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) & \\
\# (Intercept) & -0.70648 & 0.15133 & -4.668 & \(6.78 \mathrm{e}-06\) & \(* * *\) \\
\# Petal. Length & 0.42627 & 0.01045 & 40.804 & \(<2 \mathrm{e}-16\) & *** \\
\# Sepal. Width & 0.09940 & 0.04231 & 2.349 & \(0.0201 *\)
\end{tabular}
```

```
# Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 " " 1
#
# Residual standard error: 0.2034 on 147 degrees of freedom
# Multiple R-squared: 0.9297, Adjusted R-squared: 0.9288
# F-statistic: 972.7 on 2 and 147 DF, p-value: < 2.2e-16
```

- Akaike's Information Criterion (AIC)

■ Idea: prefer accurate models with smaller number of parameters

■ Test various models to reduce AIC
■ Improve good candidates

- AIC allows to check which models can be excluded

Time Series

■ A time series is a sequence of observations
■ e.g. temperature, or stock price over time
■ Prediction of the future behavior is of high interest
■ An observation may depend on any previous observation

- Trend: tendency in the data

■ Seasonality: periodic variation

Prediction models

■ Autoregressive models: AR(p)
■ Depend linearly on last p values (+ white noise)
■ Moving average models: MA(q)
■ Random shocks: Depend linearly on last q white noise terms (+ white noise)
■ Autoregressive moving average (ARMA) models

- Combine AR and MA models

■ Autoregressive integrated moving average: ARIMA(p, d, q)
■ Combines AR, MA and differencing (seasonal) models

Example Time Series

■ Temperature in Hamburg every day at 12:00
■ Three years of data $(1980,1996,2014)$

```
d = read.csv("temp-hamburg.csv", header=TRUE)
d$Lat = NULL; d$Lon = NULL
colnames(d) = c("h", "t")
d$t = d$t - 273.15 # convert degree Kelvin to
    \hookrightarrow ~ C e l c i u s
plot(d$t, xlab="day", ylab="Temperature in C")
pdf("hamburg-temp-models.pdf", width=5,height=5)
plot(d$t, xlab="day", ylab="Temperature in C")
# Enumerate values
d$index=1:nrow(d)
# General trend
m = lm("t ~ index", data=d)
points(predict(m, d), col="green")
# Summer/Winter model per day of the year
d$day=c(rep(c(1:183, 182:1),3),0)
m = lm("t ~ day + index", data=d)
points(predict(m, d), col="blue"); dev.off()
library(forecast)
# Convert data to a time series
ts = ts(d$t, frequency = 365, start= c(1980, 1))
# Apply a model for non-seasonal data on
    \hookrightarrow seasonal adjusted data
tsmod = stlm(ts, modelfunction=ar)
plot(forecast(tsmod, h=365))
```


Example Time Series Models

Figure: Linear models for trend and winter/summer cycle

Forecasts from STL + AR(14)

Figure: Using the forecast package/stlm()

Summary

- Data-cleaning and ingestion is a key to successful modeling
- Big data can be considered to be immutable
- Data models describe how information is organized
- I/O middleware, relational

■ NoSQL: Column, document, key-value, graphs
■ Semantics describe operations and behavior, e.g. POSIX, ACID, BASE
■ Process models and programming paradigms describe how to transform and analyze data

- Hadoop ecosystem offers means for batch and real-time processing
- Lambda architecture is a concept for optimizing real-time processing

■ Descriptive statistics helps analyzing samples
■ Inductive statistics provide concepts for inferring knowledge

Diagrams with Python

```
import numpy as np
import matplotlib
# Do not use X11 backend
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.style.use('ggplot') # draw like R's ggplot
# Create 4 subplots
(fig, axes) = plt.subplots(ncols=1, nrows=4)
fig.set_size_inches(15,15) # x, y
matplotlib.rcParams.update({'font.size': 22})
(ax1, ax2, ax3, ax4) = axes.ravel()
# Create a 2D scatter plot with random data
(x, y) = np.random.normal(size=(2, 10))
axl.plot(x, y, 'o')
# create a bar graph
width = 0.25
x = np.arange(4) # create a vector with 1 to 4
(y1, y2, y3) = np.random.randint(1, 10, size=(3, 4))
ax2.bar(x, y1, width)
# color schemes provide fancier output
ax2.bar(x+width, y2, width,
    color=plt.rcParams['axes.color_cycle'][2])
ax2.bar(x+2*width, y3, width,
    color=plt.rcParams['axes.color_cycle'][3])
ax2.set_xticklabels(['1', '2', '3', '4'])
ax2.set_xticks(x + width)
# Draw a line plot
ax3.plot([0,1,2,3, 4, 5], [1,0,2,1, 0,1] )
# Draw a second line
ax3.plot(range(0,5), [0,2,1, 0,1] , color="blue")
# Draw a boxplot including Q1, Q2, Q3, IQR=0.5
ax4.boxplot((x, y), labels=["A", "B"], whis=0.5)
# Store to file or visualize with plt.show()
fig.savefig('matplotlib-demo.pdf', dpi=100)
```


Figure: Output of the sample code

See http://matplotlib.org/gallery.html

Bibliography

4 Forrester Big Data Webinar. Holger Kisker, Martha Bennet. Big Data: Gold Rush Or Illusion?
10 Wikipedia
11 Book: N. Marz, J. Warren. Big Data - Principles and best practices of scalable real-time data systems.
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Process_modeling
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wiktionary.org/wiki/process
http://hortonworks.com/blog/enterprise-hadoop-journey-data-lake/
Book: Y. Dodge. The Oxford Dictionary of Statistical Terms. ISBN 0-19-920613-9
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://blog.yhathq.com/posts/r- Im-summary.html
Forecasting: principles and practise https://www.otexts.org/fpp
Hypothesis testing http://www.stats.gla.ac.uk/steps/glossary/hypothesis_testing.html
Overcoming CAP with Consistent Soft-State Replication https://www.cs.cornell.edu/Projects/mrc/IEEE-CAP.16.pdf

[^0]: ${ }^{1}$ The term is often used ambivalently for a data (meta) model concept/theory or an instance

[^1]: ${ }^{2}$ Sometimes people also call it No SQL

[^2]: ${ }^{3}$ If the profile is changed recently, the query may return an old state.
 ${ }^{4}$ Note that the definitions in the data warehousing (OLAP) and big data [11] domains are slightly different

[^3]: ${ }^{5}$ See http://nosql-database.org/ for a big list

[^4]: ${ }^{6}$ Pearson's product-moment coefficient
 ${ }^{7}$ By Spearman or Kendall

[^5]: ${ }^{8}$ We try to reject/nullify this hypothesis.
 ${ }^{9}$ Probability of obtaining a result equal or more extreme than observed.

