
Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Energy Efficiency in Operating Systems

Björn Brömstrup

Arbeitsbereich Wissenschaftliches Rechnen
Fachbereich Informatik

Fakultät für Mathematik, Informatik und Naturwissenschaften
Universität Hamburg

December 3, 2014

1 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Outline

1 Devices

2 Timer interrupts

3 CPU idling

4 CPU frequency scaling

5 Energy-aware scheduling

2 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

ACPI

Standardized interface for power management

Global states: G0 – G3

Suspend states: S1 – S4

Device states: D0 – D3

CPU idle states: C0 – Cn

CPU performance states: P0 – Pn

3 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Devices

D0 — on, D3 — off

D1 and D2 are not necessarily available

Most power management happens either in the specific
device driver or in userspace

Power domain hierarchy

Some devices might depend on others for power

Operating system can automatically suspend devices
without held references

4 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

CPU

In a typical system the CPU is the biggest power-draw
(apart from the GPU, depending on workload)

Strategies

During idle:

Removing timer interrupts (sleeping longer)
Choosing the right idle state

Under load:

CPU frequency scaling
Load balance over multiple CPUs

5 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Scheduler and timer

The scheduler allocates CPU time to individual processes

Via interrupts, the CPU is literally interrupted in its
current execution to deal with new workloads

Programmable timer interrupts keep track of future
workload

Baring any hardware interrupts, the CPU has a good idea
how much work happens in the near future

→ We roughly know how much we can idle

Likelihood of hardware interrupts can be estimated, based
on runtime statistics

6 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Ticks and timers

Traditional system

Periodic tick: Scheduler runs in a constant interval (on
Linux: 100Hz – 1000Hz)

→ constant wakeups

No concerns for energy efficiency

Now

Dynamic tick: Program the next timer interrupt to
happen only when work needs to be done

Deferrable timers: Bundle unimportant timer events with
the next interrupt

Timer migration: Move timer events away from idle CPUs

7 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

CPU idling

Entering/exiting deeper idle states takes more time

→ Trade-off between idle state and CPU latency

Switching idle state takes energy

→ Idling for too little time can cost energy

Deeper idle states will switch off more and more parts of
the CPU

→ Invalidation of cache contents and the subsequently
necessary restore can mean additional performance
impacts

8 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

cpuidle

cpuidle is a Linux kernel subsystem to manage CPU idling

The decision of which idle state to choose is delegated to
one of two governors

ladder
menu

Governors rate themselves on how effective they are on a
given system and the one with the higher rating is chosen

Constraints, like latency requirements, are tracked with a
Quality of Service (QoS) subsystem

9 / 23

cpuidle

struct cpuidle_state {
exit_latency; [us]
power_usage; [mW]
target_residency; [us]
usage;
time; [us]
enter();

}

ACPI driver

acpi cpuidle halt_idle

Generic CPUIdle Infrastructure

drivers

governors

User level
interfaces

/sys/devices/system/cpu/cpuidle

/sys/devices/system/cpu/cpuX/cpuidle

driver interface

struct cpuidle_driver {
init();
exit();
redetect();
bm_check();

}

data structures
initialization and registration
idle handling
system state change handling

cpuidle core

struct cpuidle_governor {
init();
exit();
scan();
select();
reflect();

}
governor interface

ladder menu

Step wise Latency based

Populate supported
C States

Implement functions
to enter C States

Decide the target
C State

Figure: cpuidle in the Linux kernel

source: Patrick Bellasi, Linux Power Management Architecture,
http://ilinuxkernel.com/Backup/Data/Linux.Power.Management.Architecture.-

.A.review.on.Linux.PM.frameworks.December.2010.pdf

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Ladder governor

Ladder governor

Simple, step-based approach

Works well with periodic tick

i f (l a t e n c y r e q u i r e m e n t s aren ’ t f u l f i l l e d)
jump to h i g h e r s t a t e

e l s e i f (l a s t i d l e t ime > up t h r e s h o l d)
s l e e p d e e p e r

e l s e i f (l a s t i d l e t ime < down t h r e s h o l d)
s l e e p l i g h t e r

11 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Menu governor

Tries to select the optimal state

Looks at a variety of constraints

Latency requirements
Energy break even point

Transitioning idle states costs energy
→ Not idling long enough is wasteful

Performance impact

The busier the system, the more conservative our choice
of idle state

Expected sleep time

When is the next timer interrupt and what is the
likelihood of hardware interrupts?

12 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Dynamic Voltage and Frequency Scaling (DVFS)

To reduce energy consumption CPU performance can be
reduced

Race to idle vs. working longer at lower frequency

Rapid frequency switching made it possible to adjust the
frequency dynamically based on workload

Frequency itself is not a big power draw, but to reduce
CPU voltage, the frequency has to be reduced first

Power consumption scales quadratically with CPU voltage

There may be power dependencies between CPUs on the
same socket

13 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

cpufreq

cpufreq is a Linux kernel subsystem to manage CPU frequency
states and changes

A policy is a frequency range in which the CPU needs to
stay

The policy is determined through hardware constraints
and explicit setting in userspace

Governors decide which P-state within the current policy
to choose

The active governor decides by itself when to switch
frequency. It is not called by the scheduler

14 / 23

cpufreq

struct cpufreq_policy {
min_freq; [kHz]
max_freq; [kHz]
transition_latency; [us]
...

}

acpi cpufreq speedstep

ACPI processor
driver

Generic CPUFreq Framework

CPU specific
drivers

In kernel
governors

User level
governors

powersaved cpuspeed

driver interface

struct cpufreq_driver {
init();
exit();
verify();
set_policy();
resume();

}

data structures
initialization and registration
transition handling
policy and transition notifiers

cpufreq core

struct cpufreq_governor {
governor();

}

governor interface

on demand conservative

aggressive battery fair

userspace

Define supported
policy values

Compile frequency
tables

Decide the target
P State

Figure: cpufreq in the Linux kernel

source: Patrick Bellasi, Linux Power Management Architecture,
http://ilinuxkernel.com/Backup/Data/Linux.Power.Management.Architecture.-

.A.review.on.Linux.PM.frameworks.December.2010.pdf

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Simple governors

performance

Keeps the CPU at the highest frequency

powersave

Keeps the CPU at the lowest frequency

userspace

Let’s userspace set the frequency
Programs: powersaved, cpuspeed
Larger overhead

16 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Ondemand governor

drivers/cpufreq/cpufreq ondemand.c:

Every sampling rate, we check, if current idle time is less
than 20%, then we try to increase frequency. Else we
adjust the frequency proportional to load.

Every frequency increase jumps to 100%

Minimizes performance impact
Utilizes race-to-idle

Sysfs parameters

sampling rate
up threshold
ignore nice load
sampling down factor
powersave bias

17 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Conservative governor

Less aggressive frequency scaling

Is a little more energy-efficient under light load

f o r e v e r y CPU
e v e r y X m i l l i s e c o n d s

i f (u t i l i z a t i o n s i n c e l a s t check > 80%)
i n c r e a s e f r e q u e n c y by 5%

e v e r y Y m i l l i s e c o n d s
i f (u t i l i z a t i o n s i n c e l a s t check < 20%)

d e c r e a s e f r e q u e n c y by 5%

18 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Future direction: The energy-aware scheduler

Right now, the scheduler is optimized to get work done as
quickly as possible

In a multicore environment, that means processes are
spread out among CPUs with no consideration to
energy-cost

Idea 1: Consolidate processes on fewer power domains,
whenever possible

Idea 2: Bundle workloads to as few CPUs as possible
without sacrificing performance

19 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Future direction: The energy-aware scheduler

Problems

Discrimination between ”small tasks” and ”big tasks”

Finding the right distribution between CPUs is difficult
and can be costly

Interaction between scheduler, cpuidle and cpufreq is
complicated and suboptimal

Further complication: non-homogeneous CPU
architectures, e.g. ARM big.LITTLE

20 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Conclusion

Modern systems are very efficient at doing nothing or
doing a lot

Energy-efficiency under medium load is complicated

Thank you for listening.
Any questions?

21 / 23

Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Kernel sources and documentation

Documentation/cpuidle/*

Documentation/cpu-freq/*

Documentation/scheduler/*

Documentation/timers/*

drivers/cpufreq/cpufreq*

drivers/cpuidle/cpuidle*

include/linux/cpufreq.h

include/linux/cpuidle.h

kernel/sched/idle.c

22 / 23

References

Patrick Bellasi, Linux Power Management Architecture,
http://ilinuxkernel.com/Backup/Data/Linux.Power.Management.Architecture.-
.A.review.on.Linux.PM.frameworks.December.2010.pdf

Vaidyanathan Srinivasan, Gautham R Shenoy, Srivatsa Vaddagiri, Dipankar Sarma, Energy-aware task and
interrupt management in Linux, https://www.kernel.org/doc/ols/2008/ols2008v2-pages-187-198.pdf

Venkatesh Pallipadi, Shaohua Li, Adam Belay, cpuidle — Do nothing, efficiently...,
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-126.pdf

Venkatesh Pallipadi, Alexey Starikovskiy, The Ondemand Governor,
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf

Len Brown, Anil Keshavamurthy, David Shaohua Li, Robert Moore, Venkatesh Pallipadi, Luming Yu, ACPI
in Linux, https://www.kernel.org/doc/ols/2005/ols2005v1-pages-59-76.pdf

Rafael J. Wysocki, Runtime Power Management Framework,
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011 wysocki2.pdf

Rafael J. Wysocki, Power Management In The Linux* Kernel,
http://events.linuxfoundation.org/sites/events/files/slides/kernel PM plain.pdf

Tate Hornbeck, Peter Hokanson ,Power Management in the Linux Kernel
,www.ruf.rice.edu/ mobile/elec518/lectures/2011-tatepeter.pdf

corbet, Deferrable timers, http://lwn.net/Articles/228143/

corbet, Clockevents and dyntick, http://lwn.net/Articles/223185/

Jonathan Corbet, Per-entity load tracking, http://lwn.net/Articles/531853/

Jonathan Corbet, Power-aware scheduling meets a line in the sand, http://lwn.net/Articles/552885/

Libby Clark, Boosting Linux Power Efficiency with Kernel Scheduler Updates,
https://www.linux.com/news/featured-blogs/200-libby-clark/715486-boosting-linux-power-efficiency-with-
kernel-scheduler-updates/

Preeti U. Murthy, Overview of the Current Approaches to Enhance the Linux Scheduler,
https://events.linuxfoundation.org/images/stories/slides/lfcs2013 murthy.pdf

	Devices
	ACPI
	Devices
	CPU

	Timer interrupts
	Scheduler and timer
	Ticks and timers

	CPU idling
	CPU idling
	cpuidle
	governors

	CPU frequency scaling
	DVFS
	cpufreq
	governors

	Energy-aware scheduling
	Energy-aware scheduling

