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Introduction

Introduction

Changes in quantities can accurately be described with
derivatives and be related to other quantities via equations

Differential equations are a natural way to describe
dynamically changing systems
They arise in many different contexts such as

Physics & astronomy (celestial mechanics)
Geology (weather modeling)

Chemistry (reaction rates)

Biology, social sciences, economics, ...
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We will focus on the numerical simulation of systems modeled
with Ordinary differential equations



Continuous Simulation

Recap:

» Continuous System: input, output and state variables are
defined over a range of time

» Discrete Systems: input, output and state variables are
defined for ty, t1, to, ...

» Lumped Models: only one independent variable (time)

» Distributed Model: more than one independent variable
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Continuous Simulation

» Ordinary Differential Equations model Continuous and
Lumped Systems

» Simulating a system means to solve its mathematical model
and predict its behavior in different situations

» Many important differential equations cannot be solved
exactly

» Numerical methods are employed
» The model is discretized
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Example

Falling Ball:
> A ball is falling from a height of 100 m.
» When does it reach the ground?
» Assumption: only gravitational force is acting
> Model:
V/(t) = -9.8
X'(t) = v(t)
Initial conditions: x(0) = 100, v(0) =0

Continuous Simulation
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Example

» Solution:
x(t) = 100 — 0.5(9.8)t?
v(t) = —9.8t
» System can be simulated: vertical position and speed of the
ball is given for any time t

» The ball reaches the ground at t = 4.5175 s with a velocity
v =—44.2719 m/s
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Ordinary Differential Equations

Definition
An ordinary differential equation (ODE) is an equation containing
a function of one independent variable and its derivatives.

» Ordinary: no partial derivatives
> Examples:
y'(t) = y(1),
F
X'(t) = (t, x(1))

- (Newton's Second Law)
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Ordinary Differential Equations

General form:

v

F (t,y,y’, . ,y(”71)> = y(")

where y = y(t) and y(") denotes the nth derivative of y

v

t is called independent variable or time variable

v

n is the order of the equation

v

A system of coupled differential equations is specified, if y is a
vector of functions and F is a vector valued function
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Order Reduction

» Most solvers expect first order equations

» Higher order equations can be reduced to an equivalent first
order system by introducing new functions for the derivatives:
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Classifications

» Some classes of ODEs have special properties

» Autonomous: F does not depend on t, also named
Time-invariant system

» Linear: F can be written as a linear combination of the
derivatives of y

y =" ait)y + r(t)

» Homogeneous: r(t) =0
» Inhomogeneous: r(t) # 0
» Determining stability of solutions is relatively easy
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Solutions

» A solution is a function u that is n times differentiable and
satisfies

F (t, u . u(”_1)> = u("

» It can be defined on all of R (global solution) or only on a
maximal time interval (maximal solution)

» Equations without additional conditions have a general
solution that contains a number of independent constants

» ODE describes the slope of a solution, not the actual values
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Solutions

» The constants can be set to specific values to fulfill additional
conditions, yielding a particular solution

> Initial value problem: specifies a particular solution by a
given initial value y(ty) = yo

» Boundary value problem: conditions for more than one
point are given, typically specified for the endpoints of some
time-interval

» We will focus on Initial value problems

Ordinary Differential Equations Differential Equations 11/39



Exact Solutions

» Some but not all ODEs have solutions that can be written in
exact and closed form
» Several techniques for solving exist, for example

» Direct integration

» Separation of variables

» Laplace transform

» Specialized methods for classes of equations
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Example

v

Consider the equation y' = y

v

If y # 0 on its whole domain, we can write it as y7/ =1 so that

!
/ydt:/ldt:t—l—C
y

» Since an antiderivative of y7/ is Inly|, we get

Inly]=t+ C or y==4e et

v

Solutions have the form y = Ae! (A # 0)

» y =0is a solution for A=0
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Example

» A given initial value y(0) = yp specifies the particular solution
t
Y = Yoeé

Ordinary Differential Equations Differential Equations 14/39



Initial Value Problems

» Given: the initial state yy of a system at time t; and an ODE
that determines its evolution

» Want: a function y(t) that describes the state of the system
as a function of time

» Most numerical methods expect first order equations as an
input:
y'=F(t.y),  y(to) =y
» The IVP has a unique solution, provided F is sufficiently
smooth (continuous in t and Lipschitz-continuous in y)
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Numerical Methods

» Many important problems cannot be solved analytically

» Goal: predict future values of y by simulating the systems
behavior

» Calculate a sequence of approximations yi, y», ys, ... for y at
consecutive points in time tg + h, tg + 2h, tg + 3h, ...

> his called step size

Ordinary Differential Equations Numerical Methods 16/39



Euler's Method

v

Probably the most simple and popular method

v

Trivial case of several more general techniques

v

Consider the Taylor expansion of y around t:

y(tn + h) = y(ta) + hy'(ta) + %h2y”(tn) +0(h*)

v

Euler's method uses the first two terms as an approximation

for y(tnt1):
Yny1 =Yn+ hF(tnaYn)
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Euler's Method

Geometrical description:
» Start at initial value

» Take small steps along the tangent lines through the previous
approximations

22

20

exact solution
Euler (h=1) ——
Euler (h=0.5) —%—

Ordinary Differential Equations
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Stability of Solutions

» Roughly speaking, the stability for an ODE reflects the
sensitivity of its solution to perturbations

» If the solutions are stable, they converge with time so that
perturbations are damped out

» If the solutions are unstable, they diverge with time so that
perturbations will grow

» When stepping from one approximation to the next, we land
on a different solution from what we started from

» The stability of the solutions has an influence on whether the
incurred error grows or decreases with time
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Stiffness

» ODEs for which stable solutions converge too rapidly are
called stiff

» Some methods are inefficient for stiff equations
» Example: Euler's Method applied to the IVP

y'=-23y, y(0)=1

with step-sizes h=1 and h=0.7
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Stiffness
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» Numerical solution for h = 1 oscillates and grows without
bound, stiffness forces very small step-sizes

image: http://en.wikipedia.org/wiki/File:Instability_of_Euler27s_method.svg
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Analysis

Numerical Analysis offers several concepts to evaluate the quality
of numerical methods:

» Global truncation error: difference between computed and
true solution passing through initial value:

€n = Yn _)/(tn)

» Local truncation error: error made in one step of the
method
In =Yn— Un—l(tn)

where u,_1 is the solution passing through the previous
approximation

» Want: small global error, but can only control local error
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Analysis

» Order: method has order p, if
I, = O(hPTY)

(How much does the local error decrease with the step-size?)

» Stability: method is stable if it produces stable solutions, so
that errors are not magnified
» Stability depends on the stability of the ODE being solved, the
method itself and the step-size
» A method with low stability can produce high global errors
despite a high order
» Several different definitions exist
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Analysis of Euler's Method

» Euler's Method has Order 1 (compare to Taylor series)
» It can produce unstable solutions (as seen before)

» Not effective for stiff equations
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Backward Euler Method

> Use F(tny1, ynt1) instead of F(tn, yn):

Yn+1 = Yn + hF(thrlaYnJrl)

> Need to solve an algebraic equation
> Fixed-point iteration or Newton's method often used

» Starting guess for iteration can be obtained from explicit
method or previous solution

» Same order as Euler's Method
» But: better stability and effective for stiff equations
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Generalizations

» Exploit values available upon reaching t,: v,, yp—1,... and
F(tn,yn), F(tnfl,ynfl),
» Explicit methods use information at time t, for the solution
at time t41
» e.g. Euler Method
> Implicit methods use information at time t,41

» Needs to evaluate F with argument y, 1 before its value is
known

» Generally more stable than comparable explicit methods

» e.g. Backward Euler Method

» Important classes of methods: Backward Differentiation
Formulas, Adams Methods, Runge-Kutta Methods
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Trapezoidal Rule

v

Implicit second order method

Combines Euler & Backward Euler:

v

h
Py (F(tmyn) + F(tn—i-l,)/n—i-l))

Yn+1 = Yn t+ >

v

Starting guess for y,y1 can be provided by an explicit method

v

Correct it with the implicit formula, either repeatedly (fixed
point iteration) or a fixed number of times

v

The two methods are called a predictor-corrector pair
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Heun's Method

» Heun's Method results from predicting with Euler's Method
and correcting once with the Trapezoidal rule:

Pn+1 = Yn+ hF(tmy")

h
Yn+1 = Yn + 5 (F(tn; yn) + F(tnt1, pnt1))

» Performing a single correction amounts to an explicit method

» Heun's method has order 2

Ordinary Differential Equations Numerical Methods
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Example: Euler vs. Trapezoidal rule
» Consider the IVP

y'=-15y, y(0)=1

with the exact solution y(t) = e~ 15t

3 T T T T

Euler h=1/4 —5—
2= Euler h=1/8 —5— 7|
1 Adams-Moulton, h=1/8 —F— _|
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image: http://en.wikipedia.org/wiki/File:StiffEquationNumericalSolvers.svg
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Adaptive step size

> It is appropriate to use a different size for each step to keep
the local error below some tolerance level

» Sometimes the step-size can be increased to save computation
time

» Sometimes it has to be reduced to ensure accuracy and
stability

» The Runge-Kutta-Fehlberg method RK45 achieves this by
producing 5th- and 4th-order estimates

» The difference provides an estimate for the local error
» The step-size is then adapted to the error estimate
» ode45 in matlab/octave
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Application: N-body Simulation

The gravitational N-body problem:
» Predict the motion of N gravitationally interacting particles

» Applications range from systems of few bodies to solar
systems and even systems of galactic and cosmological scale

» We will model our solar system, considering the Sun, the eight
inner and outer planets and the dwarf-planet Pluto (N = 10)
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Model

» Combining Newton's Law of Universal Gravitation and the
Second Law of Motion yields the following second order
system:

Zmlrf W1 N

3 —
' lrj = rill®

dt2 B
(consisting of 3N equations, one per body and coordinate)

» Initial values for the positions r; and velocities v; can be
obtained from http://ssd.jpl.nasa.gov/7horizons

Application: N-body Simulation
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Model

» Before the presented numerical methods can be applied, the
system must be reduced to a first order system

» We do so by introducing the first derivative of position, the
velocity, to get the following first order system:

dr; )

d—rt:v,- (i=1,...,N)

dV: mj pPj — pl .
i=1,...,N

(AR AP DS Fars )

JF#i

(consisting of now 6N equations)
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Simulation

» For simplicity, we will use Euler's method to solve the
equations

» Starting with the initial values, a series of approximations for
the position and velocity of all bodies is calculated

» The values after a time-step of length h are given by
r,-(t,,+1) = r,-(t,,) + hV,‘(tn) and

V,'(tn+1) = V,'(l'n) + ha,-(t,,)
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Simulation

» The obtained values can be used to plot the bodies’
trajectories:

1year, 1000 steps/day

sun
Mercury

Earth
Mars

008
004
003
002

001
002
003
004
008
008
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Conclusion

Conclusion

Many different numerical methods for solving ODEs exist

Higher order methods provide better accuracy but are more
expensive

When dealing with stiff ODEs, implicit methods should be
employed (BDF, Adams-Moulton, ...)

Most solvers use variable step-sizes

The choice of an appropriate method for a given problem is
crucial
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