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Introduction

I Changes in quantities can accurately be described with
derivatives and be related to other quantities via equations

I Differential equations are a natural way to describe
dynamically changing systems

I They arise in many different contexts such as
I Physics & astronomy (celestial mechanics)
I Geology (weather modeling)
I Chemistry (reaction rates)
I Biology, social sciences, economics, ...

I We will focus on the numerical simulation of systems modeled
with Ordinary differential equations
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Continuous Simulation

Recap:

I Continuous System: input, output and state variables are
defined over a range of time

I Discrete Systems: input, output and state variables are
defined for t0, t1, t2, ...

I Lumped Models: only one independent variable (time)

I Distributed Model: more than one independent variable
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Continuous Simulation

I Ordinary Differential Equations model Continuous and
Lumped Systems

I Simulating a system means to solve its mathematical model
and predict its behavior in different situations

I Many important differential equations cannot be solved
exactly

I Numerical methods are employed
I The model is discretized
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Example

Falling Ball:

I A ball is falling from a height of 100 m.

I When does it reach the ground?

I Assumption: only gravitational force is acting

I Model:
v ′(t) = −9.8

x ′(t) = v(t)

Initial conditions: x(0) = 100, v(0) = 0
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Example

I Solution:
x(t) = 100− 0.5(9.8)t2

v(t) = −9.8t

I System can be simulated: vertical position and speed of the
ball is given for any time t

I The ball reaches the ground at t = 4.5175 s with a velocity
v = −44.2719 m/s
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Ordinary Differential Equations

Definition
An ordinary differential equation (ODE) is an equation containing
a function of one independent variable and its derivatives.

I Ordinary: no partial derivatives

I Examples:
y ′(t) = y(t),

x ′′(t) =
F (t, x(t))

m
(Newton’s Second Law)
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Ordinary Differential Equations

I General form:

F
(

t, y , y ′, . . . , y (n−1)
)

= y (n)

where y = y(t) and y (n) denotes the nth derivative of y

I t is called independent variable or time variable

I n is the order of the equation

I A system of coupled differential equations is specified, if y is a
vector of functions and F is a vector valued function
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Order Reduction

I Most solvers expect first order equations

I Higher order equations can be reduced to an equivalent first
order system by introducing new functions for the derivatives:

y ′1
y ′2
...

y ′n−1

y ′n

 =


y2

y3
...

yn
F (t, y1, . . . , yn)
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Classifications

I Some classes of ODEs have special properties

I Autonomous: F does not depend on t, also named
Time-invariant system

I Linear: F can be written as a linear combination of the
derivatives of y

y (n) =
n−1∑
i=0

ai (t)y (i) + r(t)

I Homogeneous: r(t) = 0
I Inhomogeneous: r(t) 6= 0
I Determining stability of solutions is relatively easy
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Solutions

I A solution is a function u that is n times differentiable and
satisfies

F
(

t, u, u′, . . . , u(n−1)
)

= u(n)

I It can be defined on all of R (global solution) or only on a
maximal time interval (maximal solution)

I Equations without additional conditions have a general
solution that contains a number of independent constants

I ODE describes the slope of a solution, not the actual values
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Solutions

I The constants can be set to specific values to fulfill additional
conditions, yielding a particular solution

I Initial value problem: specifies a particular solution by a
given initial value y(t0) = y0

I Boundary value problem: conditions for more than one
point are given, typically specified for the endpoints of some
time-interval

I We will focus on Initial value problems
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Exact Solutions

I Some but not all ODEs have solutions that can be written in
exact and closed form

I Several techniques for solving exist, for example
I Direct integration
I Separation of variables
I Laplace transform
I Specialized methods for classes of equations
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Example

I Consider the equation y ′ = y

I If y 6= 0 on its whole domain, we can write it as y ′

y = 1 so that∫
y ′

y
dt =

∫
1dt = t + C

I Since an antiderivative of y ′

y is ln|y |, we get

ln|y | = t + C or y = ±eC · et

I Solutions have the form y = Aet (A 6= 0)

I y = 0 is a solution for A = 0
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Example

I A given initial value y(0) = y0 specifies the particular solution
y = y0et
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Initial Value Problems

I Given: the initial state y0 of a system at time t0 and an ODE
that determines its evolution

I Want: a function y(t) that describes the state of the system
as a function of time

I Most numerical methods expect first order equations as an
input:

y ′ = F (t, y), y(t0) = y0

I The IVP has a unique solution, provided F is sufficiently
smooth (continuous in t and Lipschitz-continuous in y)
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Numerical Methods

I Many important problems cannot be solved analytically

I Goal: predict future values of y by simulating the systems
behavior

I Calculate a sequence of approximations y1, y2, y3, ... for y at
consecutive points in time t0 + h, t0 + 2h, t0 + 3h, ...

I h is called step size
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Euler’s Method

I Probably the most simple and popular method

I Trivial case of several more general techniques

I Consider the Taylor expansion of y around tn:

y(tn + h) = y(tn) + hy ′(tn) +
1

2
h2y ′′(tn) + O(h3)

I Euler’s method uses the first two terms as an approximation
for y(tn+1):

yn+1 = yn + hF (tn, yn)
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Euler’s Method
Geometrical description:

I Start at initial value

I Take small steps along the tangent lines through the previous
approximations
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Stability of Solutions

I Roughly speaking, the stability for an ODE reflects the
sensitivity of its solution to perturbations

I If the solutions are stable, they converge with time so that
perturbations are damped out

I If the solutions are unstable, they diverge with time so that
perturbations will grow

I When stepping from one approximation to the next, we land
on a different solution from what we started from

I The stability of the solutions has an influence on whether the
incurred error grows or decreases with time
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Stiffness

I ODEs for which stable solutions converge too rapidly are
called stiff

I Some methods are inefficient for stiff equations

I Example: Euler’s Method applied to the IVP

y ′ = −2.3y , y(0) = 1

with step-sizes h = 1 and h = 0.7
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Stiffness

I Numerical solution for h = 1 oscillates and grows without
bound, stiffness forces very small step-sizes

image: http://en.wikipedia.org/wiki/File:Instability_of_Euler%27s_method.svg
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Analysis

Numerical Analysis offers several concepts to evaluate the quality
of numerical methods:

I Global truncation error: difference between computed and
true solution passing through initial value:

en = yn − y(tn)

I Local truncation error: error made in one step of the
method

ln = yn − un−1(tn)

where uk−1 is the solution passing through the previous
approximation

I Want: small global error, but can only control local error
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Analysis

I Order: method has order p, if

ln = O(hp+1)

(How much does the local error decrease with the step-size?)
I Stability: method is stable if it produces stable solutions, so

that errors are not magnified
I Stability depends on the stability of the ODE being solved, the

method itself and the step-size
I A method with low stability can produce high global errors

despite a high order
I Several different definitions exist
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Analysis of Euler’s Method

I Euler’s Method has Order 1 (compare to Taylor series)

I It can produce unstable solutions (as seen before)

I Not effective for stiff equations
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Backward Euler Method

I Use F (tn+1, yn+1) instead of F (tn, yn):

yn+1 = yn + hF (tn+1, yn+1)

I Need to solve an algebraic equation

I Fixed-point iteration or Newton’s method often used

I Starting guess for iteration can be obtained from explicit
method or previous solution

I Same order as Euler’s Method

I But: better stability and effective for stiff equations
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Generalizations

I Exploit values available upon reaching tn: yn, yn−1, ... and
F (tn, yn),F (tn−1, yn−1), ...

I Explicit methods use information at time tn for the solution
at time tn+1

I e.g. Euler Method

I Implicit methods use information at time tn+1

I Needs to evaluate F with argument yn+1 before its value is
known

I Generally more stable than comparable explicit methods
I e.g. Backward Euler Method

I Important classes of methods: Backward Differentiation
Formulas, Adams Methods, Runge-Kutta Methods

Ordinary Differential Equations Numerical Methods 26/39



Trapezoidal Rule

I Implicit second order method

I Combines Euler & Backward Euler:

yn+1 = yn +
h

2
(F (tn, yn) + F (tn+1, yn+1))

I Starting guess for yn+1 can be provided by an explicit method

I Correct it with the implicit formula, either repeatedly (fixed
point iteration) or a fixed number of times

I The two methods are called a predictor-corrector pair

Ordinary Differential Equations Numerical Methods 27/39



Heun’s Method

I Heun’s Method results from predicting with Euler’s Method
and correcting once with the Trapezoidal rule:

pn+1 = yn + hF (tn, yn)

yn+1 = yn +
h

2
(F (tn, yn) + F (tn+1, pn+1))

I Performing a single correction amounts to an explicit method

I Heun’s method has order 2

Ordinary Differential Equations Numerical Methods 28/39



Example: Euler vs. Trapezoidal rule

I Consider the IVP

y ′ = −15y , y(0) = 1

with the exact solution y(t) = e−15t

image: http://en.wikipedia.org/wiki/File:StiffEquationNumericalSolvers.svg
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Adaptive step size

I It is appropriate to use a different size for each step to keep
the local error below some tolerance level

I Sometimes the step-size can be increased to save computation
time

I Sometimes it has to be reduced to ensure accuracy and
stability

I The Runge-Kutta-Fehlberg method RK45 achieves this by
producing 5th- and 4th-order estimates

I The difference provides an estimate for the local error
I The step-size is then adapted to the error estimate
I ode45 in matlab/octave
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Application: N-body Simulation

The gravitational N-body problem:

I Predict the motion of N gravitationally interacting particles

I Applications range from systems of few bodies to solar
systems and even systems of galactic and cosmological scale

I We will model our solar system, considering the Sun, the eight
inner and outer planets and the dwarf-planet Pluto (N = 10)
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Model

I Combining Newton’s Law of Universal Gravitation and the
Second Law of Motion yields the following second order
system:

ai =
d2ri
dt2

= G ·
∑
j 6=i

mj(rj − ri )

‖rj − ri‖3
(i = 1, . . . ,N)

(consisting of 3N equations, one per body and coordinate)

I Initial values for the positions ri and velocities vi can be
obtained from http://ssd.jpl.nasa.gov/?horizons
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Model

I Before the presented numerical methods can be applied, the
system must be reduced to a first order system

I We do so by introducing the first derivative of position, the
velocity, to get the following first order system:

dri
dt

= vi (i = 1, . . . ,N)

dvi
dt

= ai = G ·
∑
j 6=i

mj(pj − pi )

‖pj − pi‖3
(i = 1, . . . ,N)

(consisting of now 6N equations)
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Simulation

I For simplicity, we will use Euler’s method to solve the
equations

I Starting with the initial values, a series of approximations for
the position and velocity of all bodies is calculated

I The values after a time-step of length h are given by

ri (tn+1) = ri (tn) + hvi (tn) and

vi (tn+1) = vi (tn) + hai (tn)
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Simulation
I The obtained values can be used to plot the bodies’

trajectories:
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Conclusion

I Many different numerical methods for solving ODEs exist

I Higher order methods provide better accuracy but are more
expensive

I When dealing with stiff ODEs, implicit methods should be
employed (BDF, Adams-Moulton, ...)

I Most solvers use variable step-sizes

I The choice of an appropriate method for a given problem is
crucial
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