
Towards Intelligent Self-Optimisation in HPC I/O

Julian Kunkel Michaela Zimmer Marc Wiedemann

University of Hamburg

June 20, ISC ’13

1 Introduction

2 Architecture

3 Intelligent I/O-Handling

4 Summary

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 2 / 28

Introduction

Project Goals

MPI

MPI-IO

Application

I/O-lib.

GPFS

C
lie

n
t

...ServerServer ServerServer

Activity & state

Activity & state

Activity & state

Activity & state

I/O-strategy

SAN

S
IO
X

Activity SIOX will
collect and analyse

activity patterns and
performance metrics

in order to
assess system performance
locate and diagnose problem
learn optimizations

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 3 / 28

Introduction

Partners and Funding

Funded by the BMBF
Grant No.: 01 IH 11008 B
Start: Juli 1st, 2011
Duration: 36 Months

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 4 / 28

Architecture

Architecture

Compute node

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations

Data gathered is stored via the monitoring path.
Components receive the knowledge gleaned via the knowledge path.

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 5 / 28

Architecture

Architecture

2) SIOX
Daemon

correlates component-wide
and compresses

Compute node

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Data gathered is stored via the monitoring path.
Components receive the knowledge gleaned via the knowledge path.

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 5 / 28

Architecture

Architecture

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

monitoring
data

Compute node

m : 1Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Data gathered is stored via the monitoring path.
Components receive the knowledge gleaned via the knowledge path.

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 5 / 28

Architecture

Architecture

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

monitoring
data

extract,
transform
and load
process

(off-line)

Compute node

m : 1Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Data gathered is stored via the monitoring path.
Components receive the knowledge gleaned via the knowledge path.

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 5 / 28

Architecture

Architecture

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

monitoring
data

extract,
transform
and load
process

(off-line)

Compute node

m : 1Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Monitoring Path

Data gathered is stored via the monitoring path.

Components receive the knowledge gleaned via the knowledge path.

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 5 / 28

Architecture

Architecture

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

5) SIOX
Knowledge Base

holds analyses
and optimizations

monitoring
data

extract,
transform
and load
process

(off-line)

machine
learning

algorithms
(off-line)

patterns and
optimizations

Compute node

m : 1

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Monitoring Path

Data gathered is stored via the monitoring path.

Components receive the knowledge gleaned via the knowledge path.

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 5 / 28

Architecture

Architecture

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

5) SIOX
Knowledge Base

holds analyses
and optimizations

monitoring
data

extract,
transform
and load
process

(off-line)

machine
learning

algorithms
(off-line)

Compute node / file system server

m : 1

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Monitoring Path

Knowledge Path

patterns,
optimizations
and system-
information

updates of
systeminfo,
plugindata

Data gathered is stored via the monitoring path.
Components receive the knowledge gleaned via the knowledge path.

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 5 / 28

Architecture

Alternative Architecture Configuration: Online-Mode

2) SIOX
Daemon

correlates component-wide
and compresses

5) SIOX
Knowledge Base

holds analyses
and optimizations

patterns,
optimizations
and system-
information

Compute node

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

updates of
systeminfo
and plugindata

Configuration is loaded upon startup and initializes modules
Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 6 / 28

Architecture

Overview of Concepts and Mechanisms

User-level monitoring API
“Wrapper” to ease instrumentation of software layers

Relation of activities
Implicit linking of process-internal activities
Explicit linking between remote activities
Link is created while transerring data to the warehouse

Observed activies and statistics are processed by multiple plugins
Synchronous and/or asynchronous
Activities can be handled statefull (within a process) or stateless
May use (static) system information/knowledge
Usage: Learning of optimizations, intelligent logging, own overhead

System knowledge
One database entry per node, file system, storage device
Plugins may create their own node/fs/device specific entries
Detect hardware changes (upon startup)

Local and global “reasoning” to assess system state

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 7 / 28

Architecture

Semi-Automatic Instrumentation of Software-Layers

Workflow
1 Saving relevant function prototypes in a header file
2 Annotate functions in the header
3 Tool parses header and creates either

a shared library for LD_PRELOAD
a library to use with ld –wrap

Instrumentation can be done incrementally

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 8 / 28

Architecture

Example Header for POSIX

1 // @component "POSIX"
2

3 // @register_descriptor fileName "File Name"
↪→ SIOX_STORAGE_STRING

4 /////// END GLOBAL SECTION ////////////////
5

6 // @activity
7 // @activity_attribute fileName pathname
8 // @horizontal_map_put_int ret
9 // @error ’’ret < 0’’ errno
10 int open(const char *pathname , int flags , ...);
11

12 // @activity
13 // @activity_attribute bytesToWrite count
14 // @activity_link_int fd
15 // @error ’’ret < 0’’ errno
16 ssize_t write(int fd, const void *buf , size_t count);

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 9 / 28

Intelligent I/O-Handling

Logical View of the Monitoring Path

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 10 / 28

Intelligent I/O-Handling

Intelligent Components

Component

A BACAADAE...
Activity History

xyz: 3.573393
def: 4263.885635
mol: 42.000000
...

System Statistics

ADPI
ADPI

ADPI
...

A
n
o
m

a
ly

D
e
te

ct
io

n
SOPI
SOPI

SOPI
...S

e
lf-

O
p

ti
m

iz
a
ti

o
n

Each component/layer holds:
Plug-ins to detect exceptional behaviour
Plug-ins to suggest possible optimizations

Additionally, a daemon holds:
Recent system statistics, updated regularly
Statistics plug-ins
A plugin to control SIOX behavior
A rule-based reasoner classifies system-state and bottlenecks

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 11 / 28

Intelligent I/O-Handling

Building SIOX’s Brain

To harness the data gathered, SIOX uses Knowledge Packages.

A Knowledge Package. . .
contains of

a Machine Learning Plug-In
and corresponding plugins

Anomaly Detection Plug-In
Self-Optimization Plug-In

Knowledge Package may use private Action Tables in the Knowledge Base.

The MLPI will create (and possibly update) the action table, which may
also be done manually.

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 12 / 28

Intelligent I/O-Handling

Interplay Between Monitoring and Knowledge Path (1)

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 13 / 28

Intelligent I/O-Handling

Interplay Between Monitoring and Knowledge Path (2)

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 14 / 28

Intelligent I/O-Handling

Reasoning

Node-local reasoner decides when and how long to log
System-state, detected bottlenecks and reasons are communicated

E.g. “Server overloaded”, “Bad I/O pattern“
All knowledge to global reasoner
Overview is communicated to all daemons

Global reasoner maintains statistics for later investigation

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 15 / 28

Intelligent I/O-Handling

Anomaly-Detection Plugin Example 1

A simple rule-based and stateless plugin detecting exceptional performance

Mathematical model and Action Table

fUtilization(Component, Activity) =
Time(Activity)

texpected(Component, Activity)

texpected =
Size(Activity)

SequentialTransferRate(Component)
+ latency(Component)

Result Action
fUtilization < 0.10 Report("Exceptionally low")

0.10 < fUtilization < 0.95 No Action

0.95 < fUtilization Report("Exceptionally high")

Component can be a subset of {current software layer, compute node,
file system}
Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 16 / 28

Intelligent I/O-Handling

Self-Optimization-Plugin Example 1

A simple Action Table: Adjusting a system parameter

Action table for an SOPI write-behind plug-in

Pattern Buffer Size
Open() 4MiB

Write(size < 2KiB){5x} 1MiB

Write(size < 4MiB) Write(size < 4MiB) 20MiB

Write(size ≥ 100MiB) direct-write

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 17 / 28

Intelligent I/O-Handling

Self-Optimization-Plugin Example 2

A more complex Action Table: Injecting bespoke non-functional calls

Action table for an SOPI fadvise() plug-in

Pattern Advice
SequentialRead() SequentialRead() SequentialRead() seq & willneed(size)

Open(ext = "nc") willneed(0, 20KiB)

Open(ext = "dat") noReuse & random

RandomWrite(size < 4K){5x} noReuse & random

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 18 / 28

Intelligent I/O-Handling

Towards a First Prototype

Application behavior can
be recorded in files
Activities and their
metrics read from files
Replayer to mimic
program behavior
Machine learning
restricted to parameters
in heuristics

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 19 / 28

Summary

Summary

SIOX aims to capture and optimize I/O
on all layers and filesystems

Intelligent filtering reduces log size
Integrated reasoning tries to localize causes and bottlenecks

We are building a flexible and open system

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 20 / 28

Summary

Finally: SIOX and You

Think we missed a problem?
Think you could solve one?
Like to see SIOX on your
favourite file system?

We cordially invite you to become
involved at

http://www.HPC-IO.org

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 21 / 28

Backupslides

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 22 / 28

Scalability through Hierarchical Data Transport

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 23 / 28

The Data Deluge – A Numerical Example (1)

A program writes a 1 GiB file to a parallel file system. . .
. . . of 100 I/O servers managing 5,000 storage devices
⇒ 200 KiB per device to write. . .
. . . writing 4 KiB per block on device
⇒ 250,000 blocks to write. . .
. . . logging 20 B per block written
⇒ 5 MiB logging data
⇒ 0.5 % logging overhead. . .

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 24 / 28

The Data Deluge – A Numerical Example (2)

The HPC Cluster Blizzard at DKRZ reads and writes. . .
10 GiB/s, 24/7, 365 days a year
⇒ 50 MiB/s to log for SIOX
⇒ 1,576 PiB/a logging information

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 25 / 28

Instrumentation and the Activity Multiplexer

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 26 / 28

Activity Multiplexer Normal Behavior

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 27 / 28

Ac

ity Sequence (Regular Processing)

Log(Acti

Ac

ity Multiplexer

nimty Q)

Queue Activity
Mutex Queue

Activit

Listener | | Listener
1 n

invoke lbacks registered

Push(Acti

Unlock;

Notifier may have
been inactive

due to Queue
being empty!

)

otifer will work
through Queue
until Activity

is reached

ack_a_1(Activity)

ack_a_n Activity)

When finding Queue empty,)
deactivate Notifer until
woken again by Queue

Unloc)

il

Activity Activity
Queue Queue

Notifier I

Listener | | Listener
1 n

Activity Multiplexer Throttling (Overflow) Behavior

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 28 / 28

Acti

y Sequence (Queue Overflow)
Act

y Multiplexer

Activity Listener | | Listener
Multiplexer | Queue Activity Notifier 1 n
Mutex Queue

Log(Actbity)

Lock()

Fullz()
Problem:
Queue already filled to capacity.
Notifier processing but overwheimed!
Push() is rejected, Activity lost;
Queue enters overflow mode.
rejecting any further Push) calls.

TRUE
NLost := 1
Unlock()

Multiplexer discards any activities logged. merely counting them in NLost
Meanwhile, Notifier processes Queuel unti reaching the last entry

R |

|_cui0
| Lastactivity
unlockf]

Callback_a_1(LastActivity)

Callback_a_n(LastActivity)

invoke all asynchronous callbacks registered

Lock()

|_cu0
EMPTY
|

Once Queue is emptied from overflow mode.
signal Notfier to reset all listeners
and re-enter processing mode

reset0 1 1|

NLost
Unlock()
Callback r_1(NLost_1)
Callback_r_n(NLost_n)
invoke Reset() callbacks for alllisteners to be enabled;
for all others, increase NLost_i by NLost
When finding Queue empty,
deactivate Notifier unti
woken again by Queue
Lock()
pull)
EmPTY
Unlock()
Multiplexer [Activity - Activity Notifier Listener | | Listener
Queue Queue 1 n

Mutex

	Introduction
	Architecture
	Intelligent I/O-Handling
	Summary
	Appendix

