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Architecture

Alternative Architecture Configuration: Online-Mode
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Architecture

Overview of Concepts and Mechanisms

User-level monitoring API
“Wrapper” to ease instrumentation of software layers

Relation of activities
Implicit linking of process-internal activities
Explicit linking between remote activities
Link is created while transerring data to the warehouse

Observed activies and statistics are processed by multiple plugins
Synchronous and/or asynchronous
Activities can be handled statefull (within a process) or stateless
May use (static) system information/knowledge
Usage: Learning of optimizations, intelligent logging, own overhead

System knowledge
One database entry per node, file system, storage device
Plugins may create their own node/fs/device specific entries
Detect hardware changes (upon startup)

Local and global “reasoning” to assess system state
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Architecture

Semi-Automatic Instrumentation of Software-Layers

Workflow
1 Saving relevant function prototypes in a header file
2 Annotate functions in the header
3 Tool parses header and creates either

a shared library for LD_PRELOAD
a library to use with ld –wrap

Instrumentation can be done incrementally
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Architecture

Example Header for POSIX

1 // @component "POSIX"
2

3 // @register_descriptor fileName "File Name"
↪→ SIOX_STORAGE_STRING

4 /////// END GLOBAL SECTION ////////////////
5

6 // @activity
7 // @activity_attribute fileName pathname
8 // @horizontal_map_put_int ret
9 // @error ’’ret < 0’’ errno
10 int open(const char *pathname , int flags , ...);
11

12 // @activity
13 // @activity_attribute bytesToWrite count
14 // @activity_link_int fd
15 // @error ’’ret < 0’’ errno
16 ssize_t write(int fd, const void *buf , size_t count);
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Intelligent I/O-Handling

Logical View of the Monitoring Path
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Intelligent I/O-Handling

Intelligent Components
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Each component/layer holds:
Plug-ins to detect exceptional behaviour
Plug-ins to suggest possible optimizations

Additionally, a daemon holds:
Recent system statistics, updated regularly
Statistics plug-ins
A plugin to control SIOX behavior
A rule-based reasoner classifies system-state and bottlenecks
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Intelligent I/O-Handling

Building SIOX’s Brain

To harness the data gathered, SIOX uses Knowledge Packages.

A Knowledge Package. . .
contains of

a Machine Learning Plug-In
and corresponding plugins

Anomaly Detection Plug-In
Self-Optimization Plug-In

Knowledge Package may use private Action Tables in the Knowledge Base.

The MLPI will create (and possibly update) the action table, which may
also be done manually.
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Intelligent I/O-Handling

Interplay Between Monitoring and Knowledge Path (1)
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Intelligent I/O-Handling

Interplay Between Monitoring and Knowledge Path (2)

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC I/O June 20, ISC ’13 14 / 28








Intelligent I/O-Handling

Reasoning

Node-local reasoner decides when and how long to log
System-state, detected bottlenecks and reasons are communicated

E.g. “Server overloaded”, “Bad I/O pattern“
All knowledge to global reasoner
Overview is communicated to all daemons

Global reasoner maintains statistics for later investigation
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Intelligent I/O-Handling

Anomaly-Detection Plugin Example 1

A simple rule-based and stateless plugin detecting exceptional performance

Mathematical model and Action Table

fUtilization(Component, Activity) =
Time(Activity)

texpected(Component, Activity)

texpected =
Size(Activity)

SequentialTransferRate(Component)
+ latency(Component)

Result Action
fUtilization < 0.10 Report( "Exceptionally low" )

0.10 < fUtilization < 0.95 No Action

0.95 < fUtilization Report( "Exceptionally high" )

Component can be a subset of {current software layer, compute node,
file system}
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Intelligent I/O-Handling

Self-Optimization-Plugin Example 1

A simple Action Table: Adjusting a system parameter

Action table for an SOPI write-behind plug-in

Pattern Buffer Size
Open() 4MiB

Write(size < 2KiB){5x} 1MiB

Write(size < 4MiB) Write(size < 4MiB) 20MiB

Write(size ≥ 100MiB) direct-write
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Intelligent I/O-Handling

Self-Optimization-Plugin Example 2

A more complex Action Table: Injecting bespoke non-functional calls

Action table for an SOPI fadvise() plug-in

Pattern Advice
SequentialRead() SequentialRead() SequentialRead() seq & willneed(size)

Open(ext = "nc") willneed(0, 20KiB)

Open(ext = "dat") noReuse & random

RandomWrite(size < 4K){5x} noReuse & random
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Intelligent I/O-Handling

Towards a First Prototype

Application behavior can
be recorded in files
Activities and their
metrics read from files
Replayer to mimic
program behavior
Machine learning
restricted to parameters
in heuristics
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Summary

Summary

SIOX aims to capture and optimize I/O
on all layers and filesystems

Intelligent filtering reduces log size
Integrated reasoning tries to localize causes and bottlenecks

We are building a flexible and open system
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Summary

Finally: SIOX and You

Think we missed a problem?
Think you could solve one?
Like to see SIOX on your
favourite file system?

We cordially invite you to become
involved at

http://www.HPC-IO.org
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Backupslides
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Scalability through Hierarchical Data Transport
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The Data Deluge – A Numerical Example (1)

A program writes a 1 GiB file to a parallel file system. . .
. . . of 100 I/O servers managing 5,000 storage devices
⇒ 200 KiB per device to write. . .
. . . writing 4 KiB per block on device
⇒ 250,000 blocks to write. . .
. . . logging 20 B per block written
⇒ 5 MiB logging data
⇒ 0.5 % logging overhead. . .
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The Data Deluge – A Numerical Example (2)

The HPC Cluster Blizzard at DKRZ reads and writes. . .
10 GiB/s, 24/7, 365 days a year
⇒ 50 MiB/s to log for SIOX
⇒ 1,576 PiB/a logging information
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Instrumentation and the Activity Multiplexer
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Activity Multiplexer Normal Behavior
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Activity Multiplexer Throttling (Overflow) Behavior
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