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Abstract
While compression can provide significant storage and cost
savings, its use within HPC applications is often only of
secondary concern. This is in part due to the inflexibility of
existing approaches where a single compression algorithm
has to be used throughout the whole application but also
because insights into the behaviour of the algorithms within
the context of individual applications are missing.

There are several different compression algorithms avail-
able, with each one also having a unique set of options. These
options have a direct influence on the achieved performance
and compression results. Furthermore, the algorithms and
options to use for a given dataset are highly dependent on
the characteristics of said dataset.

This paper explores how machine learning can help with
identifying fitting compression algorithms with correspond-
ing options based on actual data structure encountered dur-
ing I/O. In order to do so, a data collection and training
pipeline is introduced. Inferencing is performed during regu-
lar application runs and shows promising results. Moreover,
it provides valuable insights into the benefits of using cer-
tain compression algorithms and options for specific data.
Further investigations into more advanced machine learning
techniques and a deeper integration into existing I/O paths
will provide additional benefits.
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1 Introduction
Due to the significantly different increases in CPU and stor-
age performance, using compression by default has become
tenable. However, most file systems and I/O libraries either
do not support compression at all or do not enable it by de-
fault, because the compression algorithm’s performance and
overhead depends on the data being compressed. In addition
to that, most file systems and libraries that support compres-
sion, only allow choosing one specific algorithm that is used
for all data.

Previous studies using decision trees have shown that ma-
chine learning approaches can help automatize the algorithm
selection effectively [8]. However, these studies have been
limited to using metadata contained in self-describing data
formats to make such decisions. While this already allows au-
tomatizing the decision making process and takes the burden
of selecting an appropriate algorithm from the user, it is still
limited. We are therefore presenting an extended approach
that also takes the actual data into account. Specifically, the
contributions of this paper are:

1. We intercept of calls of commonly used I/OAPIs (HDF5,
NetCDF etc.) and specific applications (e.g., ICON) to
analyze the data being written.
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2. We use machine learning to train models that identify
the optimal compression algorithm to use for new data
according to several metrics (e.g., CR, compression
speed, decompression speed etc.).

2 Background
In this section, we introduce background on the I/O stack,
common practices in HPC storage systems and their built-
in compression features and justify the need for adaptive
compression.

Storage Stack. Before I/O operations issued by HPC ap-
plications become persistent, they typically traverse multiple
layers, like illustrated on the left part of Figure 1. In particu-
lar, scientific applications often make use of self-describing
data formats and libraries such as NetCDF and HDF5. While
they used to be competing standards, HDF5 is used inter-
nally by NetCDF-4. Both applications as well as the libraries
implementing the self-describing data formats internally use
distributed coordination and communication standards such
as the Message Passing Interface (MPI) for handling parallel
I/O before it is passed on to OS-level APIs.

Compression. Compression can be categorized into lossy
and lossless algorithms. Lossy compression requires the data
to be approximable and is very application-specific, while
lossless compression, which we focus on in this paper, can be
applied automatically and transparently to the user and ap-
plication. The two basic metrics when applying compression
are speed (or throughput) and ratio (CR), which we define as
𝐶𝑅 =

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑
. There are a couple of popular compression

algorithms, which vary in speed (compressing and decom-
pressing) and ratio and therefore can have different areas
of application. Several studies [8, 12, 13] have shown that
LZMA, ZLIB, ZSTD, XZ and BZIP2 belong to the group with
the highest CRs on different sample data; LZ4 and snappy
seem to be the fastest. We have chosen three tunable and
well-supported algorithms for our study: ZLIB and ZSTD
representing higher CRs and LZ4 with high compression
(HC) mode expecting it to be faster with acceptable CR. ZLIB
uses the DEFLATE algorithm, which is a combination of an
LZ77-derivate and Huffman coding and offers 9 levels (the
higher, the better it will compress). Its window is limited
to 32KiB for historical reasons and, therefore, its memory
usage is low (about 0.03 % for larger data sets) [4]. ZSTD is
another LZ77-based algorithm, additionally using fast Finite
State Entropy and Huffman coding. While aiming for real
time compression, it offers 7+22 levels. The negative seven
levels accelerate the compressor at the cost of the ratio; the
positive ones behave the other way around. Its window is
not limited by design and the memory consumption may rise
significantly especially for levels above 20 [15]. LZ4 is writ-
ten by one of the authors of ZSTD and is known as one of the
fastest compressors in the last years; it is also based on LZ77.

Its fast mode has unlimited levels with about 3 % of speed
increase per level and data-dependent CR reduction [1]. The
HC mode offers 9 levels and reaches ratios comparable to
the other compressors we have chosen. Both modes have
a window size of 64 KiB and use the same extremely fast
decompressor, which clearly outperforms all the others.

While the I/O stack used in HPC allows for various points
to compress at, using no compression is still predominant.
The first option to choose would be the different hardware
components: client machines, which perform the computa-
tion and are equipped with powerful CPUs or GPUs and
large amounts of main memory; and storage servers, which
are commonly much weaker, but have no additional tasks
to perform. Hardware-assisted compression, becomes more
popular and is able to gain higher speeds with same com-
pression algorithms, but requires special chips or cards and
may have stricter requirements on the memory layout [12].
Within the client, compression can be applied in software in
the application, middleware or third-party libraries, and the
file system client. Application-specific compression is hardly
ever implemented due to the huge metadata management
efforts and troubles to match the underlying system’s data
management to be efficient. Using additional features or li-
braries is the common way for compressing data before it is
sent to the storage server. NetCDF allows compression for
collective I/O only for newest versions (netcdf-c ≥ 4.7.4 and
hdf5 ≥ 1.10.3 [9]). HDF5 supports compression for parallel,
collective writes and chunked datasets [5]. The libraries sup-
port, among others, ZLIB, LZ4 and ZSTD, while the usage
of additional filters and external plugins offers other com-
pression methods. Chunking the data is required for using
compression here and can lead to many writes to multiple
storage targets for each rank, which can result in higher I/O
latency [14]. Therefore, client-side file system compression
might be the best and easiest way to utilize client hardware
for compression, but this feature does not exist yet.

File Systems. The only two file systems ever featured
by Top100 supercomputing systems are Lustre and IBM’s
Spectrum Scale [11]. IBM’s flagship uses a few algorithms
for hot and cold data for server-side compression [10].

Lustre does not support any compression except for server-
side when using the ZFS backend, which is used less than
ldiskfs without compression support[3]. In both systems,
data is transferred in full size over the network.

Adaptive Compression. However, even if compression
is used at all, the algorithm is used mostly statically and
independent of the actual occurring data. Due to the missing
universal perfect algorithm, one needs adaptive mechanisms
to avoid introducing too much overhead. The two basic com-
pression metrics mentioned above (speed and CR), can be
measured very easily, but do not provide enough insights to
choose the optimal algorithm, since the application’s, user’s
or system’s needs are oftenmore complex. Therefore, derived

9



Data-Aware Compression for HPC using Machine Learning CHEOPS ’22, April 5, 2022, RENNES, France

or combined metrics allow for better mapping of suitable
algorithm characteristics to the requirements. These can be
very abstract like best energy efficiency or overall perfor-
mance, or very specific, like best ratio at a specific minimum
throughput or fastest algorithm at a minimum ratio. More
metrics (memory, CPU usage etc.), their combinations and
the distinction between write and read, where the decom-
pression speed is significant, are possible.
In this paper, we use the CR per time as a derived met-

ric for proof of concept purposes. In our studies we have
seen clear trends for ZSTD when recognizing only CR or
the clear winner LZ4 when looking only at decompression
speed (independently of initial CR). However, the factor how
much slower ZSTD would be for the continuously higher
CR depends on the data. Chunk sizes affect the CR because
of available entropy and read performance, since the whole
chunkmust be decompressed for small reads. Smaller chunks
improve small random I/O, but decrease the CR and may hurt
large I/O. With very high decompression speeds, the usage
of larger chunks offer higher CR potential and at the end, de-
pending on the data, lead to better overall performance than
best-CR algorithms on smaller chunks. All those reasons do
not allow us to predict the optimal algorithm statically.

Use Case. Adaptive compression as a method should gen-
erally consider all relevant metrics, which include system
metrics like CPU, memory and network load. In our project
about client-side compression in Lustre [2], we can take
care of them as much as possible and determine the limits
for speeds and ratios to, e.g., saturate the network or avoid
application interrupts, when sharing the CPU between com-
pression and computation. Looking inside the data blocks
during runtime and analyzing them for best suitable algo-
rithm would slow down the file system. However, neglecting
to take the data content into account will lead to inaccu-
rate results. One would experience the same problems for
any runtime environment with concurring resources, so that
pre-analyzing the data content is the most efficient way.
Our approach aims for interfaces which can set the com-

pression algorithms for separate chunks or blocks, which is
currently no possible in middleware solutions, but will be
possible within the file system.

3 Architecture
In the following we introduce our architecture which helps
to automate three of the core challenges associated with im-
plementing adaptive data-dependent choice of compression
algorithms:

1. Sampling Phase: Allowing for automated sampling
of input-target pairs for training without requiring
changes to applications.

2. Training Phase: Leveraging state of the art machine
learning frameworks such as PyTorch for training and
hyper-parameter search.

I/O

Application

NetCDF

HDF5

BufferLD_PRELOAD

MPI-IO

POSIX

Parallel File System

Training Phase

ONNX Model

Export

Compressor

Inferencing Phase

Buffer

(a) HPC I/O Stack
(b) Sampling, training, and inferenc-
ing architecture for optimization of
compressor selection.

Figure 1. Architecture overview showing a typical I/O path
and points of instrumentation in relation to the training
phase as well the inferencing phase. The training phase ex-
ports a machine learning model which is then used in an
inferencing phase to predict a compressor based on data that
is written by an application. A more detailed breakdown of
the training phase is illustrated in Figure 2.

3. Inferencing Phase: Integration of in-bandmachine learn-
ing based decision components efficiently without the
overhead of python runtime components by using the
portable ONNX format and runtimes.

All related materials and source code is available online1.

Sampling Phase. We leverage the fact that most applica-
tion I/O is performed through common interfaces such as
MPI-IO. By intercepting MPI-IO calls, we are able to cover
applications usingMPI-IO directly but also those using HDF5
or NetCDF’s parallel I/O.
In Figure 1 a top view onto the architecture is given. In

order to intercept I/O easily from various applications the
MPI-IO layer is well-suited. As can be seen, our approach is
based on preloading a custom library (using the LD_PRELOAD
environment variable) and intercepting the MPI-IO calls. For
each I/O operation, we log certain metadata (size, datatype
etc.) and compress the data buffer using a wide range of com-
pression algorithms and settings. All metadata and resulting
metrics, such as compression speed and CR, are then stored
in an HDF5 file for later analysis. This information is used
as part of our training phase.

Training Phase. For training, the data itself is converted
into an image representation and fed to a neural network
together with the measured metrics. We use PyTorch to train
the model. The complete training phase is shown in more
detail in Figure 2.

Inferencing Phase. Once the training phase is complete,
we export the model using ONNX, which allows the model
to be used from our preloadable C library. The inferencing
1https://github.com/wr-hamburg/eurosys2022-cheops-compression
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Training Phase

Testing

Test Compressors and Levels

Measure Metrics

Compressors

LZ4 ZSTD GZIP

Metrics

Compression Rate

Compression Rate per Time

Compression Speed
Training Data

Buffer Measurements HDF5

Export

Machine Learning

Analyse Measurements

Label Buffers with Compressors 

Train Model using PyTorch

Specific Metric

Figure 2. Training phase which shows the involved steps of
gathering training data for specific metrics and using those
measurements to train a model using PyTorch.

phase takes place during regular execution of an application
and determines the most appropriate compression algorithm
and settings to use. Our library can tune the predictions
based on currently three metrics: the compression rate, the
compression rate per time and the compression speed. On
the one hand, optimizing only for the compression rate will
always choose the best-compressing and thus most likely the
most expensive compressor. On the other hand, using only
the compression speed will most likely select compressors
with a low compression rate. Including both the compression
rate and time will make sure that reasonable compression
rates are achieved while not slowing down I/O excessively.

4 Evaluation
The architecture introduced above provides two valuable
data sources, which are discussed and evaluated in this sec-
tion. A fundamental aspect of the architecture is the ability
to collect compression statistics according to the introduced
metrics. This provides meaningful insights into the variance
of fitting compression algorithms and associated compres-
sion levels. While those aspects are of importance in order to
train a neural network and therefore implement the ability to
predict compression algorithms for unseen data, the behav-
ior of said network and the performance during inferencing
is evaluated, as well.
All measurements were done using the ICON modelling

framework 2, which is a project between theGermanWeather
Service and the Max Planck Institute for Meteorology. ICON
is used for weather prediction as well as climate modelling.
The application itself is written in Fortran. However NetCDF

2https://code.mpimet.mpg.de/projects/iconpublic

is used for I/O, which itself relies on HDF5, which then uses
MPI-IO for actual reading and writing the data. As shown
in Figure 1, the shared library is therefore capable of inter-
cepting I/O related calls without any changes to the appli-
cation itself. Another aspect, which makes ICON ideal for
evaluation, is that the amount of data that is written is con-
figurable by choosing appropriate options for the simulation
environment. This is done by either selecting certain vari-
ables of interest or by limiting or extending the time frame
which should be simulated. For evaluation purposes, metrics
have been measured during a four month simulation period.
The machine learning model is then evaluated on additional
eight months, which results in an observed period of twelve
months.

4.1 Metrics
For each chunk of I/O that has been intercepted, all com-
pressors and specific levels were tested. Therefore, when
searching for the best fit for a certain metric, one specific
compressor per chunk of I/O is selected for analysis. These
perfect fits also serve as a label for the associated chunk
when training a machine learning model further on.

This is shown in Figure 3, where we test thirteen compres-
sor combinations in total. For the four month period used
within ICON for data collection purposes, 7,548 MPI-IO calls
were traced.

CompressionRatio. For visualization purposes, the range
of shown compression ratios in Figure 3a is limited to below
two, which lowers the number of shown measurements to
5,156. Those excluded measurements achieved exceptional
ratios because of uniformity of the included data. In about
45% of all cases, ZSTD-22 is the superior compressor, fol-
lowed by ZLIB-6. A compressor with a lower compression
level is sometimes selected, because depending on the data
a more aggressive compression level might not result in a
higher CR. In those cases there is not reason to prefer a
higher level, as this might result in a longer runtime.

Compression Ratio per Time. When using this metric,
the overwhelming majority of chunks should be compressed
using ZSTD-1. Therefore, when using ICON and this metric
is desired, the influence of other compressors is negligible.
ZSTD-1 provides the optimal balance between a high com-
pression rate and speed.

Compression Speed. This metric shows similarities to the
previous one in that for most cases ZSTD-1 is ideal. It is also
noteworthy that, for certain chunks, LZ4 achieves significant
decompression speeds which are unmatched by any other
compressor.

Decompression Speed. In over 45% of the cases, LZ4-1
is capable of achieving the greatest decompression speeds.
However, a variety of different levels, e.g., level 3, 9 and 12 are
useful in certain situations, as well. While low compression
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(flatten): Flatten(start_dim=1, end_dim =-1)
(linear_relu_stack): Sequential(

(0): Linear(in_features =4096,
out_features =512, bias=True)

(1): ReLU()
(2): Linear(in_features =512,

out_features =512, bias=True)
(3): ReLU()
(4): Linear(in_features =512,

out_features=num_classes , bias=True)
)

Listing 1. Architecture of the neural network used in
our evalation. Despite the simplicity of the network and
significant bias in our training data, it proves effective
when considering decision quality in respect to realized
compression ratio and compression and decompression
speeds. Smaller models are desireable as they limit memory
and runtime overhead.

levels are predominant and beneficial for high decompres-
sion speeds in most cases, there are also situations where
higher levels like LZ4-12 are helpful. This might be due to ef-
ficiencies that can be exploited when the data is packed more
densely into the memory and less data has to be processed
in general.
Altogether it can be said that in most cases not a single

compression algorithm serves as an ideal choice for eachmet-
ric. As shown earlier the influence of the data itself should
not be underestimated.

4.2 Machine Learning and Inferencing
The metrics shown previously are now used to train an
application-specific neural network. For now the network
is intentionally built using rather basic layers in order to
explore the limitation of the current approach. This is shown
below. The data is passed through a sequential stack which
consists of several linear transformations. Those are con-
nected to ReLU activation functions. Finally, the number of
outputs is dynamically set to the number of possible classes
for this specific metric.

CompressionRatio. Figure 4 shows the losseswhen train-
ing the compression rate metric. This model shows no sign of
overfitting and the observable losses are leveling out. The fi-
nal model accuracy is at 79.3 %. The confusion matrix shown
in Figure 5 resembles the metrics seen in Figure 3a. In most
cases, ZSTD-22 is predicted which matches the true compres-
sor. However, in several cases ZLIB-9, ZSTD-10 or LZ4-12
should be used and ZSTD-22 is wrongfully predicted. In
other cases, ZLIB-6 can be confidently predicted, followed
by ZSTD-3. This is also due to the imbalance of usable data
when collecting the metrics, which has to be improved fur-
ther.

In Figure 6 the selection of CRs clearly shows that, for
this specific application, a relationship between the used
MPI rank and the compression rate exists. Over time, the
ratios change differently which is especially noticeable when
comparing rank 1 with ranks 2 and 3. This observation is
also relevant when discussing how I/O changes during the
run and howwell a trained model might generalize over time
and when using different application configurations.

During this evaluation run, ICON writes 14.5 GiB of data.
Using the predicted compressors, this is reduced to 10.0 GiB.
It is noteworthy that when in all occasions the ideal compres-
sor would have been used, the total size would only reduce
by an additional 0.14 %. This shows that when the CR is of
concern, the most important decision is to use a compressor
at all. In case of ICON, a sufficient choice might be ZSTD-22.

Decompression Speed. In Figure 7, the losses encoun-
tered during the individual epochs can be seen. Interestingly,
the loss when using decompression speed as a target metric
performs worse than CR (compare Figure 4). As seen pre-
viously in Figure 3d and now in the confusion matrix in
Figure 8, ZLIB is not recommended when decompression
speed is of interest. For the most part, LZ4-1 is rightfully pre-
dicted, followed by LZ4-12. Sometimes, the model predicts
LZ4-12 instead of LZ4-9,because LZ4-9 is underrepresented
in comparison with LZ4-12. The lack of correct predictions
of ZSTD variants is less significant but is based on the same
fundamental issue.

5 Related Work
This work is at the intersection of HPC storage systems, data
reduction techniques and the application ofmachine learning
techniques to automated decision making for performance
optimization.

A recent survey analyzed opportunities for machine learn-
ing supported decision making [6]. The survey dedicates
a sizable section to the discussion of approaches that pro-
duce performance estimates but no work considering their
application to compression are discussed.
A machine learning approach that also considers a sam-

pling phase to gather training data is evaluated by [17] but
with a focus on lossy compression.

The authors of [8] have applied ML methods for adaptive
compression based on metadata. They could boost the CRs
for known and unknown data and achieve satisfactory CRs
without increases in energy consumption.

In [16], the authors introduce an adaptive dynamic adjust-
ment feedback mechanism for lossy compression of climate
model data. They could achieve a higher CR under the same
overall error by taking the local structural data character-
istics into account. That shows the relevance of the data
structure for optimal compression.

The compression algorithms perform very similar on dif-
ferent hardware architectures, like shown in [12]. Therefore,
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Figure 3. Measurements showing compressors that were ideal for a specific metric when applied to intercepted writes.
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Figure 4. Plot of training and validation loss for compression
ratio metric

heterogeneous model training should not affect the predic-
tions validity, and the results can be applied across different
systems.

6 Conclusion and Future Work
In our work we have applied ML techniques to dynamically
choose the optimal compression algorithm for a specific data
block. The block’s size and content are intercepted from
the application and represent the real world scenario. We
show that the concept of identifying fitting compression
algorithms and associated levels by leveraging common ma-
chine learning practices is promising. Optimal algorithms for
complex metrics and specific needs on certain data are impos-
sible to choose statically. It is therefore required to analyze
data dynamically which helps building a trainable dataset for
machine learning purposes. Furthermore, this gives valuable
insights into how different compressors behave in general
and in specific applications.
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So far, we have trained for a limited number of well-known
general purpose compression algorithms. More edgy algo-
rithms like xz (very high CR, very low speed) or lz4-fast
(highest speed with low CR) would complete the picture.
Depending on the scientific domain, there exist more spe-
cialized algorithms with smaller comparative basis. Like in
[7], some compressors for molecular sequence data can gain
much higher CRs compared to ZSTD, but are much slower in
decompression at the same time. Moreover, the algorithms
have different needs for working memory amounts, up to un-
bounded growth. Image compression or lossy compression in
general are worthwhile to analyze and may bring additional
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Figure 7. Plot of training and validation loss for decompres-
sion speed metric
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Figure 8. Confusion matrix after inferencing when using
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challenges related to error bound metrics. These additional
criteria and the variety of specific algorithms make it even
harder to statically choose a universal compressor for all
datasets and underlines the importance of our research.

Data analysis presented here ideally involves only fix costs
for training runs. The produced application footprints and
trained networks can be then directly reused for the same
version of the application. It would be a great benefit to
share these in an easily accessible way to avoid training of
the same data for same application in a different institution.
In the next step, it could be analyzed whether the gained
knowledge for specific data structures is applicable to other
applications without additional training.
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