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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

As part of the PeCoH project, standard software as well as individual software were
enhanced and tuned. Success stories from different scientific fields shall demonstrate
the benefit of performance and software engineering. For this purpose we cooperated
with scientists and attended to them throughout the project period. Several success
stories are closely related to code co-development. By publishing these stories we try to
reach a better acceptance of performance and software engineering in the field of HPC in
order to increase the productivity of scientists. Together with scientists, we established
pilot studies to support re-write of existing codes and to tune parallel programs. The
results are documented as success stories. The pilot studies are selected to represent
exemplary applications in order to make the results transferable in generalised form
to similar problems. This enables the derivation of best practices and strategies and it
supports the scientists in their daily work.

The collection of the success stories includes studies on topics such as

• encouraging HPC users who have only used simple editors and the command line
interface for the program development to consider integrated development envi-
ronments (IDEs) like Eclipse [Ecl19] and Visual Studio Code (VS Code) [Mic18]

• teaching important software engineering concepts like refactoring, consistent cod-
ing style, documentation, debugging, and unit testing based on a tutorial carried
out by HPC users

• finding insidious bugs in large Fortran programs using tools

• parallelising R programs using the foreach() parallelization paradigm

• achieving performance improvements for R programs by using efficient libraries
like OpenBLAS or MKL, an appropriate compiler and MPI environment, and appro-
priate compiler options

• parallelising the reading of GRIB (GRIdded Binary or General Regularly-distributed
Information in Binary form) data using the Climate Data Interface (CDI) [MPI19a]

• automatically finding the parameter combinations for building and running parallel
applications that give the best benchmark results using a Black Box Optimizer Tool,
which is based on genetic algorithms. Build parameters include the selection of
the best performing compiler, MPI environment, and runtime parameters relate to
the best setting of MPI options and application specific options for an appropriate
partitioning, tiling, ...
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CHAPTER 2. SUCCESS STORIES

Chapter 2

Success Stories

Three types of success stories are presented below, distinguished according to whether
the focus is on a) code co-development and tuning, b) code co-development, or c) tun-
ing. To make the success stories potentially suitable as input for a knowledge base, we
designed and applied a generic template for the outline of a success story.

The template is divided into five sections:

1. problem description characterizing the initial situation.

2. procedure outlining the concrete steps and the methods used.

3. results emphasizing the advantages and disadvantages of the applied concepts.

4. software and performance engineering concepts that have been used for the code
co-development and/or tuning. For detailed information about the performance
and software engineering concepts that are used below refer to [HHKS18].

5. material that have been used in the code co-development process.
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Chapter 3

Success Stories based on Code
Co-Development and Tuning

The following optimizations have been co-developed with scientists based on their ob-
servation that the code performs suboptimal.

3.1 Statistics Package R: Regression Analysis

3.1.1 Problem Description

The runtimes of an R program using the rlassoEffects-function [SCH18], were too high
for larger problem sizes.

3.1.2 Procedure

Together with the HPC user we reproduced the problem by deriving benchmarks from
the problem. Next, we explained possible ways to parallelize the program in order to
improve its performance. In this case a parallelization was implemented by replacing
sequential loops with parallel loops using existing R packages like doMPI, foreach, iter-
ators, and Rmpi [Wes17].

Benchmarks were performed for a small and a larger problem size using up to 8
cluster nodes and up to 16 physical/32 hyper-threaded cores on each node. To avoid
measuring inaccuracies and to avoid effects caused by special features of current CPU
architectures, the problem sizes are chosen in a way that runtimes are several seconds
at least for the small problem size and half a minute at least for the larger problem size.
For instance, the CPU clock rates of a typical multi-core cluster node supporting features
like turbo boost may vary depending on the CPU usage. At low CPU load, for example,
if only a single core is used, the clock rate of this core is typically considerably higher
than the clock rate at times when several cores are fully utilized. If many cores are fully
utilized over a period of time, the clock rates of the cores will usually be reduced over
time to avoid a rise in CPU temperature, which is determined by the clock rates.

3.1.3 Results

It was observed that one additional core of the first node is needed by the R MPI run-
time environment for internal purposes when a benchmark is performed via mpirun. For
the sake of simplicity, this additional core is neglected in the calculation of speedup and
efficiency. Except for the case where only one node was used for the bigger problem

D6.2 Collection of Success Stories 6/26



CHAPTER 3. SUCCESS STORIES BASED ON CODE CO-DEVELOPMENT AND TUNING

size, the results showed that hyper-threading has a negative impact on the speedups.
In general the speedups achieved are better for the bigger problem size. For the small
problem size a speedup of 9.36 is achieved on two cluster nodes, each using 16 cores (ef-
ficiency 30.18%). No meaningful speedup can be achieved using four or more nodes. For
the bigger problem size, we achieved a speedup of about 30 on four cluster nodes, each
using 16 cores (efficiency 44.78%). With 8 nodes hardly any improvement is achieved.
For detailed information about the benchmark results refer to Section “Three use Cases
for R Programs” – Use Case B in Deliverable 5.1 [Him19].

3.1.4 Applied Performance and Software Engineering Concepts

Listed below are the performance and software engineering concepts which were ap-
plied within the scope of this success story. For more information about these concepts
refer to [HHKS18].

PE2.1 Using Standard Tools to Measure System Performance
Notes: elapsed runtime of a program measured

PE3 Benchmarking
Notes: controlled experiments performed to measure speedups and efficiencies by
providing varying HPC resources, i.e., 1, 2, 4, 8, ... nodes on a distributed system

PE4.3 Tuning via Reprogramming
Notes: parallel outer loop added

SE1.2.1 Parallel Algorithms
Notes: embarrassingly (i.e., trivially) parallelizable algorithm

SE1.2.3 Programming Message Passing Systems
Notes: MPI used as the de-facto standard for parallelizing a program in distributed
environments like HPC cluster systems

SE1.2.4 Load Balancing
Notes: simple scheduling, as a result from foreach() paradigm, achieves an appro-
priate distribution of the workloads across the multiple computing resources of the
HPC system

SE2.3 Programming Idioms
Notes: foreach() paradigm

3.1.5 Material

The benchmarks were based on test data provided by the HPC user with whom we have
jointly performed the code co-development.

3.2 Statistics Package R: Analyzing Satellite Night Images

3.2.1 Problem Description

The runtimes of an R program for analyzing satellite night images were too high for
practical use.
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3.2.2 Procedure

Together with the HPC user we reproduced the problem by the help of benchmarks.
Next we explained possible ways to parallelize the program in order to improve its per-
formance. In this case a parallelization was implemented by replacing sequential loops
with parallel loops using appropriate R packages like doMPI, foreach, iterators, and
Rmpi [Wes17].

Benchmarks were performed with up to 32 cluster nodes and up to 16 physical/32
hyper-threaded cores on each node. A challenge was the large demand of the program
for main memory.

3.2.3 Results

The R runtime environment uses a workspace that includes all user-defined objects (vec-
tors, matrices, lists, functions, ...). In connection with the R MPI package it was observed
that for each parallel process, this workspace is replicated. On nodes with many cores
this may lead to an out-of-memory problem.

One idea to avoid this problem is not to use all cores of a node. It must be assessed
in the individual case whether the underutilization of nodes (but instead using more
nodes) seems appropriate to further reduce the time to solution. On 32 cluster nodes,
each using 4 cores, we achieved a speedup of 126 compared to sequential run. For
detailed information about the benchmark results refer to Section “Three use Cases for
R Programs” – Use Case C in Deliverable 5.1 [Him19].

3.2.4 Applied Performance and Software Engineering Concepts

Listed below are the performance and software engineering concepts which were ap-
plied within the scope of this success story. For more information about these concepts
refer to [HHKS18].

PE1 Cost Awareness
Notes: the underutilization of nodes was accepted considering the time to solution
constraints

PE2.1 Using Standard Tools to Measure System Performance
Notes: elapsed runtime of a program measured

PE3 Benchmarking
Notes: controlled experiments performed to measure speedups and efficiencies by
providing varying HPC resources, i.e., 1, 2, 4, 8, ... nodes on a distributed system

PE4.3 Tuning via Reprogramming
Notes: parallel outer loop added

SE1.2.1 Parallel Algorithms
Notes: embarrassingly (i.e., trivially) parallelizable algorithm

SE1.2.3 Programming Message Passing Systems
Notes: MPI used as the de-facto standard for parallelizing a program in distributed
environments like HPC cluster systems
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SE1.2.4 Load Balancing
Notes: simple scheduling, as a result from foreach() paradigm, achieves an appro-
priate distribution of the workloads across the multiple computing resources of the
HPC system

SE2.3 Programming Idioms
Notes: foreach() paradigm

3.2.5 Material

The benchmarks were based on test data provided by the HPC user with whom we have
jointly performed the code co-development.

D6.2 Collection of Success Stories 9/26



CHAPTER 4. SUCCESS STORIES BASED ON CODE CO-DEVELOPMENT

Chapter 4

Success Stories based on Code
Co-Development

4.1 Teaching Software Engineering Concepts

4.1.1 Problem Description

Scientists often use text editors like vim [ubu19b], emacs [GNU19], or nano [ubu19a] to
write the source code. While those editors support at least source code highlighting, they
lack advanced features like debugging, automatic refactoring, code structure views, or
formatting support, to name just a few. That is why the Eclipse Integrated Development
Environment (IDE) has been chosen as an exemplary IDE to teach such important soft-
ware engineering concepts and to explore the benefit an IDE may have on scientists’
workflow.

4.1.2 Procedure

To keep the code co-development as simple as possible for HPC developers but with a
good transferability of results, we have chosen the use of an Integrated Development
Environment (IDE), refactoring, consistent coding style, documentation, debugging, and
unit testing as particularly relevant concepts, given the experience that many HPC users
are not aware of the benefits of applying these concepts in practice. Then we asked
scientists to apply them in their everyday work. We designed a tutorial to teach them
the most important principles of the software engineering practices. In order to collect
the experiences of the code co-development process, the participant needed to fill out a
survey. Additionally, we interviewed the participants.

4.1.3 Results

The results are based on the feedback mentioned above and collected by talking to the
participants and meets our expectations: Indentation and naming conventions helped to
enhance and keep the understandability of the code and introducing naming convention
does not require high effort. Refactoring to divide the code into functions of shorter
length keeps the structure of the code and improves understandability. Documentation
in form of code comments improves understandability of code.

However, during the code co-development process we found that it is challenging
to introduce software development methods into the development process of scientists
in the context of HPC. Especially the documentation of the code was considered time
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consuming. Scientists fear that following software engineering practices might slow
down the entire research process. One plausible explanation for this is that they mostly
write code without having sustainability in mind and without considering that the code
will often be shared with other scientists. But even if the code will not be shared with
other scientists, it can be assumed that a break-even will be reached when scientists use
modern software development methods.

Nevertheless, further studies should be carried out to broaden the use of software en-
gineering techniques in the field of HPC in order to increase the performance of parallel
programs.

For a detailed description of the experience report on the code co-development pro-
cess refer to Deliverable 2.2 [Sch19].

4.1.4 Applied Performance and Software Engineering Concepts

Listed below are the performance and software engineering concepts which were ap-
plied within the scope of this success story. For more information about these concepts
refer to [HHKS18].

SE2.1 Integrated Development Environments
Notes: configuration and usage of the integrated development environment (IDE)
Eclipse, e.g., to seamlessly perform the typical development cycle with the steps
edit, build (compile and link), and test

SE2.2 Debugging
Notes: using a sophisticated debugger via the IDE to perform the common debug-
ging workflow based on commands like step into, step over, step out, set breakpoint
as a very helpful and supportive method to find and resolve defects within a pro-
gram

SE4.1 Test-driven Development and Agile Testing
Notes: unit testing ensures that a part of an application – the unit – meets its
requirements, i.e., that it behaves as intended

SE5.1 Coding Standards
Notes: consistent coding style, e.g., regarding indentation and naming conven-
tions, enhances the understandability of the source code

SE5.3 Refactoring
Notes: applying common code refactoring improves code quality

SE7.3 Source Code Documentation
Notes: code comments improve the understandability of code

4.1.5 Material

As supplementary material a tutorial has been designed for the participants for each
selected concept (also refer to Deliverable 2.2 [Sch19]).
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4.2 Finding an Insidious Bug in a Large Fortran Program

4.2.1 Problem Description

The BQCD (Berlin quantum chromodynamics program) [ABS08] written in Fortran did
not utilize SIMD instructions. As part of this case study, BQCD was ported to utilize
SIMD instructions; also, appropriate macros for various operations with complex num-
bers were implemented. After several test runs, the results of the ported BQCD version,
hereinafter named BQCDSIMD, were identical with the results of the original version,
hereinafter named BQCDREF . Therefore, the new SIMD functionality was considered
to be successfully tested. But after further testing, it surprisingly became clear that
BQCDSIMD produces incorrect results for certain input data. A direct relation with the
implementation of the SIMD based macros was therefore not immediately obvious. As a
lucky circumstance for finding the bug it can be noted that BQCDREF and BQCDSIMD

each behave in a deterministic way for the same input.

4.2.2 Procedure

To fix the bug, a pragmatic approach was chosen: both BQCD versions were run simulta-
neously using two separate debuggers belonging to their respective Visual Studio Code
(VS Code) [Mic18] IDE, while the same input data was provided. For managing both de-
bug environments, two virtual machines (VMs) were configured on a single physical PC,
for which differences arise only from the differences in the source code of both BQCD
versions. The PC had two displays connected to it so that both code version could be
debugged on one monitor in fullscreen mode, i.e., BQCDSIMD on one, and BQCDREF

on the other.
For debugging the following approach was taken:
Initially the total number of iterations imax for the outermost loop of BQCDREF is

determined in a pretest. Then the debugging ist started simultaneously for both versions
setting breakpoints in a way that both versions are interrupted after the first half of the
total number of iterations imax/2. At the time of the interruption of both programs,
all relevant data structures which may influence the differences in the final results af-
ter having completed all iterations, are examined with the corresponding debugger and
their contents are compared between both environments. Two cases are to be distin-
guished: a) the contents of the relevant data structures already diverge, indicating that
an incorrect calculation must have been carried out before, or b) the contents are still
identical, indicating that an incorrect calculation will be carried out in a later iteration.

In the case of a) the debugging for both BQCD versions is restarted and this time the
breakpoints are set in a way that both versions are interrupted after the first quarter of
the total number of iterations imax/4. In the case of b) the breakpoints are set in a way
that both versions are interrupted after three-quarters of the total number of iterations
imax · 3/4. In analogy to a bisection method, this process repeats until the loop index
ierror is determined, where the inaccurate calculation in BQCDSIMD is first discovered.

After narrowing the error in this way, the debugging is restarted and the breakpoints
are set to interrupt the execution at loop index ierror − 1. Via single stepping from this
point synchronously through both versions the error can be further narrowed by exam-
ining the relevant data structures and comparing their contents between both environ-
ments after each step. In the present case, this was sufficient to identify the macro that
was responsible for the faulty calculation. The error then became immediately apparent
and the bug was fixed using an additional temporary variable for a certain arithmetic
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operation with complex numbers. If single stepping through the programs seems to be
too time consuming, the foregoing procedure can be used in an analogous way, e.g., by
applying it to inner loops relative to loop index ierror − 1.

4.2.3 Results

Using IDEs and applying a schematic approach to use debuggers an insidious bug in
a large Fortran program could be found in about half an hour (not counting the time
for initially setting up the IDEs and debugging environments). The error was originally
introduced by porting a macro to tune a calculation with complex numbers by the help
of SIMD instructions: just missing was the buffering of the actual content of a variable
in a temporary variable in order to be able to use this content after it gets overwritten
(similar to the idiom used for a typical swap operation).

The developer of the macro additionally used an alternative approach to find the
error by the help of inserting print statements into the source code at “suspicious loca-
tions”. In this way the error could also be found very fast. Inserting print statements into
source code to find errors is still widely used, especially in the field of HPC. In contrast
to the schematic approach, however, this alternative requires expert knowledge and a
great familiarity with the corresponding source code to make this approach, which is
more concerned with intuition, efficient. In connection with the procedure using two
debuggers in the way described above the question arises if it could be automated or at
least largely automated for analogous cases, where – in a deterministic way – a refer-
ence version of a program produces correct results and a modified version of the same
program produces inaccurate results for certain input data.

4.2.4 Applied Performance and Software Engineering Concepts

Listed below are the performance and software engineering concepts which were ap-
plied within the scope of this success story. For more information about these concepts
refer to [HHKS18].

SE2.1 Integrated Development Environments
Notes: configuration and usage of the integrated development environment (IDE)
Visual Studio Code (VS Code) [Mic18], e.g., to seamlessly perform the typical de-
velopment cycle with the steps edit, build (compile and link), and test

SE2.2 Debugging
Notes: using a sophisticated debugger via the IDE to perform the common debug-
ging workflow based on commands like step into, step over, step out, set breakpoint
as a very helpful an supportive method to find and resolve defects within a program

4.2.5 Material

The development of the BQCD (Berlin Quantum Chromodynamics) program was started
in 1998 by Stüben for the two flavour case and the original Wilson action [ABS18]. The
sources are available for download [ABS18]. Here we used the sources of an unmodified
BQCD version and the sources of a SIMD ported version.
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Chapter 5

Success Stories based on Tuning

5.1 Statistics Package R: Using Efficient Libraries

5.1.1 Problem Description

Many urgent needs for tuning programs written in the language R were brought to us
by users.

5.1.2 Procedure

Benchmark experiments were performed based on the R Benchmark 2.5 test suite [Urb18]
and building and/or selecting optimized Mathlibs (i.e., OpenBLAS or MKL). The test
suite contains three sections named “Matrix calculation”, “Matrix functions”, and “Pro-
grammation” containing 5 tests each, giving 15 tests in total. Each test is run three
times to obtain more accurate results. The test suite consists mainly of a mix of ma-
trix operations (e.g., cross product, eigenvalues, ...) and algorithmic parts (e.g., recur-
sion, loops, ...). Additional experiments were performed using the environment variable
OMP_NUM_THREADS in order to exploit parallelism using several threads.

5.1.3 Results

The experiments showed that the selection of an efficient library like OpenBLAS or MKL
leads to good performance improvements with respect to the use of the standard li-
brary. In the experiments where binaries were built from source, an optimization level
of -O3 (Intel compiler) gave the best results, whereas using Profile Guided Optimization
(PGO) was not beneficial. The speedup results for MKL where usually better than those
achieved with OpenBLAS by a small margin. Using one core on a single cluster node, we
achieved a speedup of about 5 for the configuration with the MKL library. Hardly any ad-
ditional speedup could be achieved for the experiments were up to 16 physical threads
were used setting the environment variable OMP_NUM_THREADS in order to exploit
parallelism on a single cluster node (about 15% (OpenBLAS) and about 18% (MKL) com-
pared to a single core). For detailed information about the benchmark results refer to
Section “Three use Cases for R Programs” – Use Case A in Deliverable 5.1 [Him19].

5.1.4 Applied Performance and Software Engineering Concepts

Listed below are the performance and software engineering concepts which were ap-
plied within the scope of this success story. For more information about these concepts
refer to [HHKS18].
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PE2.1 Using Standard Tools to Measure System Performance
Notes: elapsed runtime of a program measured

PE3 Benchmarking
Notes: controlled experiments performed to measure speedups and efficiencies by
providing varying resources of a single cluster node, i.e., 1, 2, 4, 8, ... cores on a
shared memory system

PE5 Optimization Cycle
Notes: various parameter combinations were manually examined via the cycle set
next parameter combination → benchmark

5.1.5 Material

The benchmarks were based on the R Benchmark 2.5 test suite [Urb18].

5.2 Parallelization of Decompression in CDI

5.2.1 Problem Description

The Climate Data Interface (CDI) [MPI19a] is a library that is used for I/O in many
programs used by climate scientists. This library provides a unified interface to read
and write data in different relevant file formats like GRIB (GRIdded Binary or Gen-
eral Regularly-distributed Information in Binary form) and NetCDF (Network Common
Data Form) [Uni19]. Some of these formats have the feature that they may contain com-
pressed data, which needs to be decompressed when read. However, it was observed
that read performance dropped by a factor of 5 when reading compressed data, even
though less data needs to be fetched from storage.

5.2.2 Procedure

First, to analyze the situation, the involved libraries were instrumented to measure the
performance systematically. Then, the optimization of the overall workflow was per-
formed by implementing a non-invasive parallelization scheme.

We were provided with access to the current source codes of both CDI and CDO, as
well as a set of large GRIB files that used AEC compression. The simple program app/cdi
was employed as a test. This program, which is included with the source code of the CDI
library, uses the CDI library to both read a file, and then store the same data in a new file.
In addition to the CDI library, the libaec was compiled from source (which is provided
by the German Climate Computing Center). This allowed for instrumentation of both
the high-level calls within the CDI library, as well as the low-level calls into the libaec.
Between these two layers is the GribAPI library, which is quite difficult to compile from
source. The GribAPI is used by CDI to decode the GRIB messages within a GRIB file,
and it is the GribAPI which then uses libaec to perform the (de-)compression of the data.
Instrumentation of CDI itself was straight-forward, instrumentation of libaec required
use of the LD_PRELOAD environment variable to override the libaec version referenced
by the standard GribAPI installation on the mistral.

After instrumenting the involved code and measuring its performance in detail, we
concluded that CDI itself was not to blame. Instead, the libraries that are used by CDI
are responsible for the slowdown. Since the more important of these two libraries is
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rather hard to change, we decided to simply parallelize the entire decoding process. In
our parallelization, the application’s main process reads the compressed chunks of data,
dispatches them to worker processes for decoding, and collects the results for passing
them back to the user of CDI. This parallelization was implemented in a way that makes
it transparent to the user code.

Instrumentation

Sequential Version Instrumentation recorded the following wall-clock times, together
with their respective payload data amount (compression is associated with data size
before compression and after decompression):

• Read side:

– read:
Time to fetch a GRIB record from storage.
The data is not interpreted in any way.

– unzip:
Decompression of data that is initiated by CDI directly.
This seems not to be used within the test setup.

– decode:
Interpretation of the record’s data using the GribAPI to retrieve the payload
data contained within.
This may include a decompression step that’s initiated by the GribAPI.

– AEC:
Time spent within libaec.
This is a part of the decode time.

• Write side:

– encode:
Reverse of decode, this takes the payload data and turns it into a GRIB record.

– zip:
Compression that is initiated by CDI directly.
Not used in the test setup.

– write:
Output the in-memory GRIB record to disk.

All instrumentation captures the times for each call of the respective subroutine,
updates a static accumulator variable, and outputs the current value of the accumulator.
That way, the last output will always give the times aggregated over all calls.

Parallelized Version To verify the success of the parallelization, the resulting code was
instrumented again, providing the following times:

• Read side:
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– read:
As with the sequential code, the time used to actually read data from disk.
Same as before parallelization.

– request:
The time spent by the main thread to dispatch work to the worker threads.

– wait:
The time spent by the main thread waiting for an async job to finish.

– copy:
The time spent by the main thread copying the worker’s results back into the
user supplied buffer.

– async decode:
The time spent by the worker threads to decode the data.
This is expected to be a multiple of the total read time.

– sync decode:
Any time that the main thread spends decoding data itself because the re-
quested data could not be fetched from a worker.

• Write side:

– encode:
Same as before parallelization.

– zip:
Same as before parallelization.

– write:
Same as before parallelization.

Test Setup

For our tests, four different files were selected from the given set of files, and from each
file the first timestep was extracted using CDO. This served to cut down on execution
time requirements for the tests, as the original files have sizes in the range between 226
MB and 69 GB. With the one-timestep reduction, the four test files had the following
sizes:

var1-compr.grb: 236175040 bytes

var2-compr.grb: 7308019640 bytes

var3-compr.grb: 700737416 bytes

var4-compr.grb: 4516496832 bytes

Also, copies of all four files were created which do not use AEC compression by
executing app/cdi varX-{,un}compressed.grb, the resulting uncompressed files had
the following sizes:

var1-uncompr.grb: 838861510 bytes

var2-uncompr.grb: 12918469102 bytes
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var3-uncompr.grb: 1677723020 bytes

var4-uncompr.grb: 12918469102 bytes

The CDI version tested is (git commit 6130d637d3f2bb0c6dad3b8e9613063fcf281340),
the libaec version 1.0.4 (commit 0c0453a0e463da9c2183f46d0255f05645e0e5ef).

Measurements

Sequential Version

                |    file 1     |      file 2      |     file 3
    ------------+---------------+------------------+---------------
    input       | 3355MB/8.569s | 51674MB/154.712s | 6711MB/20.163s
        read    |  236MB/0.088s |  7308MB/  2.452s |  701MB/ 0.226s
        unzip   |  236MB/0.000s |  7308MB/  0.000s |  701MB/ 0.000s
        decode  | 3355MB/8.481s | 51674MB/152.261s | 6711MB/19.937s
            AEC |  839MB/3.945s | 12918MB/ 85.311s | 1678MB/10.975s
    ------------+---------------+------------------+---------------
    output      | 3355MB/5.209s | 51674MB/76.302s  | 6711MB/9.949s
        encode  | 3355MB/3.756s | 51674MB/52.639s  | 6711MB/7.060s
        zip     |  839MB/0.000s | 12918MB/ 0.000s  | 1678MB/0.000s
        write   |  839MB/1.453s | 12918MB/23.663s  | 1678MB/2.889s

                |      file 4      ||         total         |
    ------------+------------------++-----------------------+
    input       | 51674MB/150.474s || 113GB/334s =  340MB/s |
        read    |  4516MB/  1.761s ||  13GB/  5s = 2819MB/s |
        unzip   |  4516MB/  0.000s ||  13GB/  0s            |
        decode  | 51674MB/148.713s || 113GB/329s =  344MB/s |
            AEC | 12918MB/ 82.728s ||  28GB/183s =  155MB/s |
    ------------+------------------++-----------------------+
    output      | 51674MB/74.860s  || 113GB/166s =  682MB/s |
        encode  | 51674MB/51.402s  || 113GB/115s =  987MB/s |
        zip     | 12918MB/ 0.000s  ||  28GB/  0s            |
        write   | 12918MB/23.458s  ||  28GB/ 51s =  551MB/s |
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Table 5.1: Compressed Input
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                |    file 1     |     file 2      |    file 3
    ------------+---------------+-----------------+--------------
    input       | 3355MB/1.835s | 51674MB/23.033s | 6711MB/4.575s
        read    |  839MB/0.346s | 12918MB/ 5.035s | 1678MB/1.949s
        unzip   |  839MB/0.000s | 12918MB/ 0.035s | 1678MB/0.000s
        decode  | 3355MB/1.489s | 51674MB/17.962s | 6711MB/2.626s
            AEC |               |                 |
    ------------+---------------+-----------------+--------------
    output      | 3355MB/5.251s | 51674MB/77.027s | 6711MB/9.877s
        encode  | 3355MB/3.789s | 51674MB/53.185s | 6711MB/7.010s
        zip     |  839MB/0.000s | 12918MB/ 0.000s | 1678MB/0.000s
        write   |  839MB/1.462s | 12918MB/23.843s | 1678MB/2.867s

                |     file 4      ||         total         |
    ------------+-----------------++-----------------------+
    input       | 51674MB/36.875s || 113GB/ 66s = 1710MB/s |
        read    | 12918MB/18.135s ||  28GB/ 25s = 1113MB/s |
        unzip   | 12918MB/ 0.000s ||  28GB/  0s            |
        decode  | 51674MB/18.740s || 113GB/ 41s = 2779MB/s |
            AEC |                 ||                       |
    ------------+-----------------++-----------------------+
    output      | 51674MB/76.852s || 113GB/169s =  671MB/s |
        encode  | 51674MB/52.484s || 113GB/116s =  974MB/s |
        zip     | 12918MB/ 0.000s ||  28GB/  0s            |
        write   | 12918MB/24.367s ||  28GB/ 53s =  540MB/s |

Table 5.2: Uncompressed Input
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Parallelized Version, 8 Worker Threads
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                |     file 1    |       file 2    |      file 3
    ------------+---------------+-----------------+--------------
    input       | 4.082s        | 30.819s         | 5.331s
        read    | 0.240s        | 15.692s         | 1.298s
        request | 0.000s        | 0.000s          | 0.000s
        wait    | 2.760s        | 1.439s          | 1.909s
        copy    | 1.222s        | 15.620s         | 2.253s
        sync    | 0.000s        | 0.000s          | 0.000s
        async   | 11.750s       | 213.933s        | 27.788s
    ------------+---------------+-----------------+--------------
    output      | 5.538s        | 82.287s         | 10.519s
        encode  | 3355MB/3.936s | 51674MB/56.527s | 6711MB/7.274s
        zip     |  839MB/0.000s | 12918MB/0.000s  | 1678MB/0.000s
        write   |  839MB/1.602s | 12918MB/25.760s | 1678MB/3.245s

                |       file 4    ||         total                  |
    ------------+-----------------++--------------------------------+
    input       | 25.925s         || 66s                            |
        read    | 9.932s          || 27s                            |
        request | 0.003s          || 0s                             |
        wait    | 2.162s          || 8s                             |
        copy    | 13.639s         || 33s                            |
        sync    | 0.000s          || 0s                             |
        async   | 208.540s        || 462s                           |
    ------------+-----------------++--------------------------------+
    output      | 83.926s         || 182s                           |
        encode  | 51674MB/57.669s || 113414MB/125s = 904.374591MB/s |
        zip     | 12918MB/0.000s  || 28353MB/0s                     |
        write   | 12918MB/26.257s || 28353MB/57s = 498.61072MB/s    |

Table 5.3: Compressed Input
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                |     file 1    |       file 2    |      file 3
    ------------+---------------+-----------------+--------------
    input       | 2.430s        | 39.282s         | 5.949s
        read    | 1.168s        | 26.131s         | 3.570s
        request | 0.000s        | 0.003s          | 0.000s
        wait    | 0.000s        | 0.000s          | 0.000s
        copy    | 1.302s        | 14.808s         | 2.366s
        sync    | 0.000s        | 0.000s          | 0.000s
        async   | 4.372s        | 63.205s         | 8.910s
    ------------+---------------+-----------------+--------------
    output      | 5.558s        | 81.112s         | 11.067s
        encode  | 3355MB/3.910s | 51674MB/55.674s | 6711MB/7.803s
        zip     |  839MB/0.000s | 12918MB/ 0.000s | 1678MB/0.000s
        write   |  839MB/1.649s | 12918MB/25.438s | 1678MB/3.264s

                |       file 4    ||         total                  |
    ------------+-----------------++--------------------------------+
    input       | 41.599s         || 89s                            |
        read    | 26.256s         || 57s                            |
        request | 0.000s          || 0s                             |
        wait    | 0.000s          || 0s                             |
        copy    | 14.641s         || 33s                            |
        sync    | 0.000s          || 0s                             |
        async   | 64.493s         || 141s                           |
    ------------+-----------------++--------------------------------+
    output      | 84.060s         || 182s                           |
        encode  | 51674MB/58.155s || 113414MB/126s = 903.39488MB/s  |
        zip     | 12918MB/ 0.000s || 28353MB/0s                     |
        write   | 12918MB/25.905s || 28353MB/56s = 503.999573MB/s   |

Table 5.4: Uncompressed Input
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5.2.3 Results

The parallelization succeeded in accelerating input to the former speed of reading un-
compressed data (5x speedup). However, reading uncompressed data with paralleliza-
tion switched on is a bit slower than serial processing (factor 1.35) due to the additional
movement of data between master and worker processes. Of course, it is possible switch
off parallelization in that case, making reading of compressed and uncompressed data
equally fast.

It was critical to perform the measurements first for this optimization effort, as the
resulting numbers quickly allowed us to rule out a number of approaches as not efficient
enough. As a consequence, we could settle on the best solution right away.

The users were satisfied with the outcome of this co-development project: “The ac-
celeration is quite visible and works as expected. It is even beneficial for weakly com-
pressed GRIB files if low resolutions are used.” says Luis Kornblueh of the Max Planck
Institute for Meteorology.

5.2.4 Applied Performance and Software Engineering Concepts

Listed below are the performance and software engineering concepts which were ap-
plied within the scope of this success story. For more information about these concepts
refer to [HHKS18].

PE2.1 Using Standard Tools to Measure System Performance
Notes: instrumentation was used to record wall-clock times, together with their
respective payload data amount (compression is associated with data size before
compression and after decompression)

PE3 Benchmarking
Notes: controlled experiments were performed to measure I/O performance for file
operations like read, unzip, decode, AEC compression, encode, zip, and write

PE4.3 Tuning via Reprogramming
Notes: dispatching chunks of data to parallel worker processes

SE1.2.1 Parallel Algorithms
Notes: the application’s main process reads the compressed chunks of data, dis-
patches them to worker processes for decoding, and collects the results for passing
them back to the user of CDI

SE1.2.4 Load Balancing
Notes: simple scheduling by dispatching chunks of data to parallel worker pro-
cesses

5.2.5 Material

We were provided with access to the current source codes of both CDI and CDO, as well
as a set of large GRIB files that used AEC compression.
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5.3 Automatic Tuning Using a Black Box Optimizer Tool

5.3.1 Problem Description

In the beginning of the project, we started with manually tuning programs. The typical
tuning workflow was represented by an optimization cycle with the steps set parameter
combination, benchmark the program, and evaluate benchmark result to determine the
next improved parameter combination. This approach was suitable to produce good tun-
ing results, but traditional manual tuning was more time consuming than anticipated.
For this reason, we realigned the focus to perform experiments using a Black Box Op-
timizer Tool based on genetic algorithms, in order to automatically find the parameter
combination for a parallel application that gives the best benchmark result.

5.3.2 Procedure

In initial experiments the Black Box Optimizer was used to automatically tune two small
MPI test programs: a parallel program to calculate π and a parallel solver for boolean
satisfiability problems (SAT). The experience from these experiments provided the ba-
sis for tuning two real applications afterwards with the Black Box Optimizer: BQCD
(Berlin Quantum Chromodynamics program) [ABS18], a parallel program for simulating
lattice QCD with dynamical Wilson fermions, and Fesom2 (Finite-Element/volumE Sea
ice-Ocean Model) [Fes19], a parallel program for simulating the circulation of the global
ocean with regional focus.

Automatically tuning these parallel programs was performed without modifying the
source code, e.g., by setting appropriate runtime options and selecting the best per-
forming compiler (GNU, Intel, or PGI) and MPI environment (Intel MPI or Open-MPI) for
each specific program. For a small number of parameters, it would have been possible to
benchmark all parameter combinations in the sense of a brute-force approach. But with
the increase of parameters, the search space increases exponentially and a brute-force
is no longer suitable. Aside from choosing the most appropriate compiler (GNU, Intel,
PGI, ...) in the most suitable version (latest version, second latest version, ...) and in
the most appropriate combination with an MPI environment (Intel MPI, Open-MPI, ...)
there are many other runtime options, for example for the selection of the algorithm
for collective MPI operations (e.g., Recursive doubling, Rabenseifner’s, Reduce Bcast, ...
for MPI_Allreduce), for process pinning and mapping, or for the use of hyper-threading.
In addition, there were application specific options for BQCD, e.g., for partitioning and
tiling. Genetic algorithms are widely used in practice as a strategy to reduce such huge
search spaces efficiently.

Genetic algorithms are an appropriate method to solve complex optimization prob-
lems which are not solvable with analytical methods. A specific combination of param-
eters (known as genes) is named an individual or chromosome. The basic idea is to
select and combine two good solutions to produce an even better solution by applying
the genetic operations crossover (i.e., exchanging genes of the parents) and mutation
(i.e. slightly modifying a gene with a low random probability). The optimization process
starts with a set of (typically randomly created) individuals (known as the population)
which is named initial solution. New solutions are produced until a sufficiently good
solution has been found or the solution cannot be further improved.
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5.3.3 Results

For the parallel test program to calculate π we selected 6 input parameters for tun-
ing: CompilerSelection (GCC, Intel, ...), CompilerGeneration (latest, second latest, ...),
MPISelection (Open-MPI, Intel MPI), OptimizationLevel (-O0, -O1, -O2, -O3, ...), UsePro-
fileGuidedOptimization (on, off), and UseHyperthreading (on, off). The execution of the
parallel π program was configured to use 4 cluster nodes, each with 16 physical cores.
For a brute-force approach 480 benchmarks would be required to analyse all possible
combinations of the 6 input parameters. The Black Box Optimizer found the best solu-
tion after 100 runs in total. Two interesting observations were that the latest compiler
generation is not always the fastest and that hyper-threading and Profile Guided Op-
timization (PGO) are sometimes helpful. For purposes of comparison, we tuned the π

application manually as well but we were not able to achieve a better result than the
Black Box Optimizer.

While the π calculation was characterized by floating point calculations for the sec-
ond parallel test program, we chose a simple parallel solver for boolean satisfiability
problems (SAT) from the artificial intelligence (AI) domain. The six input parameters
to optimize were the same as for the π calculation and the execution of the solver was
configured to use four cluster nodes, each with 16 physical cores. This time the Black
Box Optimizer found the best solution after a total of 60 benchmarks.

For BQCD (first real-world program) a suitable partitioning, i.e., the best mapping of
work to processing elements, is of central importance for the performance. In contrast
to the first two experiments the build step is omitted. For BQCD we selected 8 input
parameters for tuning: three partitioning parameters, three internal BQCD parameters,
a parameter to control hyper-threading, and a parameter to control SIMD execution.
For the sake of simplicity, we do not go into more detail about the meaning of these
parameters. It is not necessary to know their meaning, because also the Black Box
Optimizer modifies these parameters without any knowledge about their meaning. For
a brute-force approach, 20736 benchmark runs would be required to analyse all possible
combinations of the 8 input parameters. The execution of BQCD was configured to
use 8 cluster nodes, each with 16 physical cores. The best solution was found after
900 benchmarks, which was about 10–15% faster than results achieved with parameter
settings based on educated guesses by the author of the BQCD program.

For Fesom2 (second real-world program), similar to optimization of the π and SAT
programs a build step is involved to determine the best compiler, best compiler gen-
eration, and so on. Fesom2 can be regarded as a typical MPI program for which load
imbalances may play a role caused by the lack of structure of the grids. Two Fesom2
experiments were carried out: For the first experiment the MPI parameters were tuned
manually in advance and for the second experiment they were additionally tuned by the
Black Box Optimizer. For the first Fesom2 experiment, we selected 9 input parameters
for tuning, the first 6 parameters being the same as for tuning π and SAT. The three ad-
ditional parameters are: MathlibSelection (MKL, OpenBLAS), ProcessBindingSelection
(bind process to core, bind process to hwthread, bind process to socket, ...), and Pro-
cessMappingSelection (blocked per node, cycling by node in a round-robin fashion, ...).
For a brute-force approach, 5760 benchmarks would be required to analyse all possible
combinations of the 9 input parameters. The execution of Fesom2 was configured to
use 32 cluster nodes with 16 physical cores each. In the past, Fesom2 was solely tuned
manually. The best result from the first Fesom2 experiment showed that it is as good as
results which were previously achieved based on expert knowledge and profiling, e.g.,
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to manually tune MPI settings for the communication patterns detected.
For the second Fesom2 experiment, 10 MPI runtime parameters were tuned in ad-

dition to the 9 parameters of the first experiment (e.g., for the algorithm selection for
collective MPI routines, handling of barriers, ...). With these additional MPI parameters,
a brute-force approach would require several billion benchmarks to analyse all possible
combinations of all input parameters. The execution of Fesom2 was configured again
to use 32 cluster nodes, each with 16 physical cores. The best result from the second
Fesom2 experiment is, in turn, comparable to the best result from the first experiment.
This shows that the Black Box Optimizer automatically finds also equivalent settings for
the MPI runtime environment that are comparable to the ones found by time-consuming
manual tuning.

For detailed benchmark results refer to Deliverable 5.1 [Him19].

5.3.4 Applied Performance and Software Engineering Concepts

Listed below are the performance and software engineering concepts which were ap-
plied within the scope of this success story. For more information about these concepts
refer to [HHKS18].

PE3 Benchmarking
Notes: controlled experiments were performed automatically to measure speedups
and efficiencies by providing varying HPC resources, e.g., 1, 2, 4, 8, ... cores on a
shared memory system or 1, 2, 4, 8, ... nodes on a distributed system

PE4.1 Tuning without Building a Parallel Program
Notes: BQCD was tuned via partitioning, tiling, and setting of internal runtime
parameters

PE4.2 Tuning without Modifying the Source Code
Notes: both MPI test programs (π calculation and SAT solver) as well as Fesom2
were tuned by searching e.g., the best performing compiler and MPI environment,
appropriate compiler/linker options, and appropriate runtime parameters

PE5 Optimization Cycle
Notes: in order to find the best parameter combination for building and/or running
a parallel program the cycle set next parameter combination → benchmark is han-
dled automatically by the Black Box Optimizer during the examination of various
parameter combinations based on genetic algorithms

5.3.5 Material

The small MPI test program to calculate π is contained in the download package of
the MPICH implementation of MPI [MPI19b]). For the small MPI test program to solve
boolean satisfiability problems (SAT) see [Bur19] with reference to [Qui03]. The devel-
opment of the BQCD (Berlin Quantum Chromodynamics) program was started in 1998
by Stüben for the two flavour case and the original Wilson action [ABS18]. The BQCD
sources are available for download [ABS18]. For Fesom2 (Finite-Element/volumE Sea
ice-Ocean Model), a multi-resolution ocean general circulation model that solves the
equations of motion describing the ocean and sea ice using finite-element and finite-
volume methods on unstructured computational grids see [Fes19]. The Fesom2 sources
are available for download via GitHub [Fes19]. The Black Box Optimizer Tool goes back
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to ideas used to find best input parameter values automatically with regard to a certain
optimal behavior of a coupled system simulating the different processes at an airport
[HKMW14]. The corresponding framework approach for the simulation based optimiza-
tion using genetic algorithms was proposed in the context of the BMBF (Bundesminis-
terium für Bildung und Forschung/Federal Ministry of Education and Research) cluster
of excellence project “Efficient Airport 2030” [HKMW14].
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