
D5.1 Documentation of Recommendations

Kai Himstedt and Hinnerk Stüben

Work Package: WP5
Responsible Institution: RRZ, DKRZ
Date of Submission: November 2019

Abstract

The goal of the Performance Conscious HPC (PeCoH) project is to increase the runtime
performance of parallel applications. The main focus is on tuning parallel programs
without modifying the source code, e.g., by setting appropriate runtime options and
selecting the best performing compiler (GNU, Intel, or PGI) and MPI environment (Intel
MPI or Open-MPI) for each specific program. Tuning via reprogramming will be rather
an exception in this work package (WP). It is described, how switching to an automatic
tuning approach using a Black Box Optimizer tool (based on genetic algorithms) can
greatly reduce the effort still needed in the beginning of the project for manually tuning
parallel programs. Recommendations (lessons learned, best practices, ...) are given for
the software packages we dealt with. Some observations from the benchmarks provide
generally valid insights (e.g., the latest compiler generation is not always the fastest). On
the basis of various benchmark results a short comparative assessment is given between
the manual and the automatic tuning approach.

CONTENTS

Contents

1 Relation to the Project 2

2 Introduction 3

3 Traditional Tuning 4
3.1 Three Use Cases for R Programs . 4
3.2 Using Gaussian in an HPC Environment . 6
3.3 Using MATLAB in an HPC Environment . 8

4 Automatic Tuning Using a Black Box Optimizer Tool 9
4.1 Simulation-based Optimization with Genetic Algorithms 10
4.2 First Tuning Experiments . 11
4.3 Tuning Real Applications . 14

4.3.1 BQCD . 14
4.3.2 Fesom2 . 16

5 Summary and Conclusions 21

D5.1 Documentation of Recommendations 1/25

CHAPTER 1. RELATION TO THE PROJECT

Chapter 1

Relation to the Project

The following text is an excerpt from the description of the project proposal for work
package 5 (WP5):

High-level tuning possibilities of application software are evaluated and rec-
ommendations for efficient use are documented. This requires 1) the deter-
mination of tuning possibilities, 2) the set-up of realistic use cases for bench-
marking, 3) benchmarking itself, and 4) documentation of the tuning solution.
Application software, which is used RRZ and TUHH, shall be evaluated. [...]
Note that we will not perform detailed performance optimization of the pack-
ages themselves, but focus on high-level configuration and runtime issues, for
example, compiler flags, job placement and MPI settings.

First of all, the significant aspects of the tasks of WP5 will be addressed: The help
desk, which was set up as a ticketing system (see also [HK18], p. 11), is available for
tuning questions and support (Task 5.1). The determination of tuning possibilities (Task
5.2) covers specific tuning options that can be set via environment variables, command
line arguments, input keywords, parallelization (choice of message passing vs. threads,
work decomposition, matching to compute hardware), and I/O (choice of file sizes and
numbers of files, matching to I/O hardware). In order to study tuning possibilities in
real benchmarks, realistic use cases have to be set up (Task 5.3). In principle, tuning
settings can be guessed from experience. Real benchmarking (Task 5.4) is performed
in addition in order to verify that a good tuning setting was found. For each software
tuning possibilities, use cases, as well as benchmark results for different tuning settings
are described, and recommendations are given (Task 5.5).

D5.1 Documentation of Recommendations 2/25

CHAPTER 2. INTRODUCTION

Chapter 2

Introduction

Users running well-tuned programs in a well-tuned environment will get their results
faster, which certainly has a motivating effect. Additionally they will better exploit the
HPC resources, which reduces the operating costs of the data center for the scientific
outputs. This leads to a classic win-win situation.

We started our first tuning efforts approaching the users and prioritizing the activities
to focus on the statistics package R. For two of the three studied use cases, we used a co-
development approach to exploit the parallelization potential of sequential loops without
data dependencies. A typical high level tuning was performed for the third use case,
for which no source code was modified, by selecting particularly efficient libraries and
by using a suitable combination of compiler and OpenMP/MPI environment. These use
cases will be discussed in Chapter 3 on Traditional Tuning.

All further experiments are also based on tuning without or nearly without the source
code being modified. This includes experiments to find good settings for using the stan-
dard software packages Gaussian [Gau19] and MATLAB [Mat19] in an HPC environment,
which is also described in Chapter 3. For MATLAB experiments, we additionally paral-
lelized sequential loops using the parfor paradigm. The tuning of runtime options from
the outside without the need to (re-)build a parallel program can be considered as a
sub-category of tuning without modifying the source code.

The typical tuning workflow is represented by an optimization cycle with the steps
set parameter combination, benchmark the program, and evalute benchmark result to
determine the next improved parameter combination. This approach was suitable to
produce good tuning results, but nevertheless traditional manual tuning has turned out
to be much more time consuming than anticipated. For this reason, we realigned the
focus in WP5 to perform experiments with a Black Box Optimizer Tool in order to auto-
matically find the parameter combination for a parallel application that gives the best
benchmark result. This approach, which is based on genetic algorithms, is described
in Chapter 4 on Automatic Tuning. In initial experiments the Black Box Optimizer was
used to automatically tune two small MPI test programs: a parallel program to calculate
π and a parallel solver for boolean satisfiability problems (SAT). The experience from
these experiments provided the basis for tuning two real applications afterwards with
the Black Box Optimizer: BQCD (Berlin Quantum Chromodynamics program) [ABS18], a
parallel program for simulating lattice QCD with dynamical Wilson fermions, and Fesom2
(Finite-Element/volumE Sea ice-Ocean Model) [Fes19], a parallel program for simulating
the circulation of the global ocean with regional focus.

D5.1 Documentation of Recommendations 3/25

CHAPTER 3. TRADITIONAL TUNING

Chapter 3

Traditional Tuning

3.1 Three Use Cases for R Programs

Use Case A

We initially started with manually tuning programs written in the language R, because
the most urgent users’ needs for tuning have arisen in this context. Three use cases for
R programs were studied in order to give the specific tuning information relevant for
the R software package. Tuning ideas were determined by expert knowledge and the
software documentation and implemented subsequently.

Experiments were performed based on the R Benchmark 2.5 test suite [Urb18]. The
test suite contains three sections named “Matrix calculation”, “Matrix functions”, and
“Programmation” containing 5 tests each, giving 15 tests in total. Each test is run three
times to obtain more accurate results. The test suite consists mainly of a mix of matrix
operations (e.g., cross product, eigenvalues, ...) and algorithmic parts (e.g., recursion,
loops, ...).

The benchmark results are shown in Table 3.1 for experiments with two CPU types.
It was observed that the initialization phase of a test (e.g., to setup large matrices) took
quite some time, so the R Benchmark was additonally instrumented to show the time
used for initialization and the actual computing time separately. A direct comparison
of time results is only meaningful for experiments for which the same CPU types were
used.

Tabelle1

Seite 1

Machine CPU (Intel) Binary Mathlib Threads

1 PC Core i5-6500 package manager Standard 2 71.03 120.17 191.20
2 PC Core i5-6500 build from source Standard 1 70.47 132.75 203.22
3 PC Core i5-6500 build from source Standard 2 69.07 119.89 188.96
4 PC Core i5-6500 package manager OpenBLAS 2 14.54 16.54 31.08
5 PC Core i5-6500 build from source OpenBLAS 1 15.83 19.20 35.03
6 PC Core i5-6500 build from source OpenBLAS 2 13.89 14.87 28.76
7 Cluster Xeon E5-2630 package manager OpenBLAS 1 19.46 19.45 38.91
8 Cluster Xeon E5-2630 build from source Standard 1 68.74 115.81 184.55
9 Cluster Xeon E5-2630 build from source OpenBLAS 1 21.53 22.22 43.75

10 Cluster Xeon E5-2630 build from source OpenBLAS 4 19.91 18.11 38.02
11 Cluster Xeon E5-2630 build from source OpenBLAS 16 19.98 17.38 37.36
12 Cluster Xeon E5-2630 build from source MKL 1 18.45 17.58 36.03
13 Cluster Xeon E5-2630 build from source MKL 4 16.61 14.22 30.83
14 Cluster Xeon E5-2630 build from source MKL 16 16.30 13.42 29.72

Initialization
Time [s]

Computing
Time [s]

Total
Time [s]

Table 3.1: Results for the R Benchmark 2.5 Test Suite

D5.1 Documentation of Recommendations 4/25

CHAPTER 3. TRADITIONAL TUNING

The results of the experiments show that the selection of an efficient library like
OpenBLAS or MKL lead to good performance improvements with respect to the use
of the standard library. In the experiments where binaries were built from source, an
optimization level of -O3 (Intel compiler) gave the best results, whereas using Profile
Guided Optimization (PGO) was not beneficial. The speedup results for MKL were usu-
ally better than those achieved with OpenBLAS by a small margin. (For the benchmarks
performed in the PC environment the MKL library was not available.) Using one core
on a single cluster node, we achieved a speedup of about 5 for the configuration with
the MKL library. Additional experiments were performed using the environment variable
OMP_NUM_THREADS in order to exploit parallelism using several threads. But, using
up to 16 cores on a single cluster node, the results in Table 3.1 show that hardly any
additional speedup could be achieved (about 15% (OpenBLAS) and about 18% (MKL)
compared to a single core). Increasing the number of cores reduced for both libraries
the computing times slightly better than the initialization times. It seems that simple
initialization instructions do not contain much exploitable parallelism.

Use Case B

Experiments were performed taking the rlassoEffects-function [SCH18] as a real-world
example. For this use case, the parallelization was implemented by replacing sequential
loops with parallel loops using appropriate R packages like doMPI, foreach, iterators,
and Rmpi [Wes17]. The experiments have the general form of “X ← matrix(rnorm(n ·
p), ncol = p)...”. The benchmark results are shown in Table 3.2 for a small problem size
and in Table 3.3 for a larger problem. To avoid measuring inaccuracies and to avoid
effects caused by special features of current CPU architectures the values for n, p, ... are
chosen in a way that runtimes are not too short. For instance, the CPU clock rates of a
typical multi-core cluster node supporting features like turbo boost may vary depending
on the CPU usage. At low CPU load, when for example only a single core is used, the
clock rate of this core is typically considerably higher than the clock rate at times when
several cores are fully utilized. If many cores are fully utilized over a period of time,
the clock rates of the cores will be usually reduced over time to avoid a rise in CPU
temperature, which is heavily affected by the clock rates.

Tabelle1

Seite 1

Nodes HT Speedup Efficiency

1 1 1 1 no 134.966 0.068 135.034 1.00 100.00%
2 1 2 2 no 66.485 0.068 66.553 2.03 101.45%
3 1 4 4 no 37.149 0.068 37.217 3.63 90.71%
4 1 8 8 no 21.532 0.059 21.591 6.25 78.18%
5 1 15 15 no 15.387 0.062 15.450 8.74 58.27%
6 1 31 31 yes 19.589 0.096 19.685 6.86 44.26%
7 2 16 31 no 14.283 0.150 14.432 9.36 30.18%
8 2 32 63 yes 18.534 0.315 18.849 7.16 22.74%
9 4 16 63 no 13.969 0.340 14.309 9.44 14.98%

10 4 32 127 yes 19.685 0.752 20.437 6.61 10.40%
11 8 16 127 no 15.279 0.710 15.989 8.45 6.65%
12 8 32 255 yes 19.819 1.880 21.699 6.22 4.88%

Cores Used
per Node

Total
Cores Used

CPU
Time [s]

System
Time [s]

Total
 Time [s]

Table 3.2: Results for Benchmarking rlassoEffects (n=1000, p=400, s=20)

D5.1 Documentation of Recommendations 5/25

CHAPTER 3. TRADITIONAL TUNING

Tabelle1

Seite 1

Nodes HT Speedup Efficiency

1 1 1 1 no 884.323 0.355 884.678 1.00 100.00%
2 1 2 2 no 438.495 0.316 438.811 2.02 100.80%
3 1 4 4 no 233.511 0.283 233.795 3.78 94.60%
4 1 8 8 no 124.181 0.293 124.474 7.11 88.84%
5 1 15 15 no 71.273 0.265 71.538 12.37 82.44%
6 1 31 31 yes 59.886 0.399 60.285 14.67 94.68%
7 2 16 31 no 37.275 0.340 37.615 23.52 75.87%
8 2 32 63 yes 44.339 0.564 44.904 19.70 62.54%
9 4 16 63 no 30.880 0.481 31.361 28.21 44.78%

10 4 32 127 yes 40.333 0.932 41.265 21.44 33.76%
11 8 16 127 no 30.048 0.814 30.862 28.67 22.57%
12 8 32 255 yes 34.167 2.074 36.240 24.41 19.15%

Cores Used
per Node

Total
Cores Used

CPU
Time [s]

System
Time [s]

Total
 Time [s]

Table 3.3: Results for Benchmarking rlassoEffects (n=6000, p=600, s=20)

It was observed that one additional core of the first node is needed by the R MPI run-
time environment for internal purposes when a benchmark was executed via mpirun. For
the sake of simplicity, this additional core is neglected in the tables for the calculation of
speedups and efficiencies. In those experiments where the hyper-threading (HT) tech-
nology was enabled, the number of hyper-threaded cores is divided by two to give a fair
calculation of the efficiency column, assuming that two hyper-threaded cores have only
slightly more computing power than their corresponding physical core. Anyway, except
for the case where only one node was used for the bigger problem size, the results show
that hyper-threading has a negative impact on the speedups. In general the speedups
and efficiencies achieved are better for the bigger problem size. For the small problem
size a speedup of 9.36 is achieved on two cluster nodes, each using 16 cores, and no
meaningful speedup can be achieved using four or more nodes. For the bigger problem
size we achieved a speedup of about 30 on four cluster nodes, each using 16 cores. With
8 nodes hardly any improvement is achieved.

Use Case C

For the experiments, we parallelized – in collaboration with the user and base on the
experience gained from Use Case B – a program for analyzing satellite night images
using a foreach() paradigm. The performance engineering know-how was successfully
transferred to end users. One new challenge was a large demand of the program for
main memory. The R runtime environment uses a workspace that includes all user-
defined objects (vectors, matrices, lists, functions, ...). In connection with the R MPI
package it was observed that for each parallel process this workspace is replicated. On
nodes with many cores this may lead to an out-of-memory problem. One idea to avoid
this problem is not to use all cores of a node. It must be assessed in the individual case
whether the underutilization of nodes (but instead using more nodes) seems appropriate
to further reduce the time to solution. On 32 cluster nodes, each using 4 cores, we
achieved a speedup of 126 compared to sequential run.

3.2 Using Gaussian in an HPC Environment

When using Gaussian [Gau19] it is worthwhile to care about setting up the execution
environment. In particular, one can explixitly declare the number of CPU cores to be

D5.1 Documentation of Recommendations 6/25

CHAPTER 3. TRADITIONAL TUNING

used, how threads are pinned to these cores, the amount auf main memory that the
program can use, and the directory for scratch files.

There are four different places where the environment can be specified (for an overview
see [Gaua]): the Default.Route file, the input, the command line, or via environment vari-
ables. The latter three possibilities are considered in the following. Recommendations
for concrete settings can be found at [Gaub].

CPUs (parallel execution) [Gauc]

By default Gaussian runs serially. For parallel execution the number of CPU cores to
be used must be specified (cluster parallelism, i.e., using more than one node, is not
covered here). Possibilities for CPU settings are shown in Table 3.4. Examples for CPU
settings are given in Table 3.5.

input file %CPU=list
command line -c=list
environment variable GAUSS_CDEF=list

Table 3.4: Possibilities for CPU settings in Gaussian.

list 0,1,2,3,4,5
range 0-5 short for: 0,1,2,3,4,5
range with increment 0-5/2 short for: 0,2,4

Table 3.5: Examples for CPU settings in Gaussian (values of list in Table 3.4).

Specifying list has two effects: (a) The number of CPUs (or threads, respectively) is
determined by the number of entries in list, (b) Gaussian tries to pin threads to the
CPUs specified.

Main memory [Gaud]

By default Gaussian 2019 uses 800 MByte of main memory. To prevent swapping, it is
important to specify more memory if needed. Possibilities for main memory settings are
shown in Table 3.6.

input file %Mem=value
command line -m=value
environment variable GAUSS_MDEF=value

Table 3.6: Possibilities for main memory settings in Gaussian.

giga-bytes 50gb
mega-words 100mw same as: 800mb

Table 3.7: Examples for main memory settings in Gaussian (values of value in Table 3.6).

D5.1 Documentation of Recommendations 7/25

CHAPTER 3. TRADITIONAL TUNING

The amount of memory can be specified in multiples of kb (kilo-bytes), mb (mega-bytes),
gb (giga-bytes), tb (tera-bytes), kw (kilo-words), mw (mega-words), gw (giga-words), tw
(tera-words); 1 word = 8 bytes .

Directory for scratch files [Gaue]

The third performance influencing factor that should be mentioned is the location of
scratch files. The directory for scratch files can be specified via the environment variable
GAUSS_SCRDIR. The available space in that directory (or the corresponding disk) can be
specified by a further environment variable: e.g., GAUSS_RDEF="MaxDisk=95GB". The
amount of space is specified in the same way as the amount of main memory (see above).

3.3 Using MATLAB in an HPC Environment

To speed up large computations (of any kind) parallelization is indispensable. In MAT-
LAB [Mat19], parallel computing is enabled by the Parallel Computing Toolbox. It allows
to use all compute resources of a single server. For employing multiple servers, the
MATLAB Parallel Server module is needed, which will not be considered here.

MATLAB has a good introduction to parallel computing with their Parallel Computing
Toolbox, see [Mata]. In general, parallelization in MATLAB is hard or impossible to ob-
tain automatically. An exception is if most of the work of a program is done in a function
that somebody has already parallelized. Then one instance of the existing program can
“automatically” run in parallel. In many use cases, an existing program is run several
times using different input and producing different output. Such runs are independent
of each other and can, in principle, run at the same time in parallel. This is called trivial
parallelism, embarassingly parallel or lately pleasingly parallel.

The idea of the Parallel Computing Toolbox is that only a single MATLAB license is
needed for using the all cores of a compute node. A user could just start one instance of
MATLAB on each core, but this would require one license per core. Therefore, MATLAB’s
special constructs for trivial parallelisation should be used. This requires to modify
existing MATLAB programs: an outer loop has to be introduced that loops over different
runs of the original program. The outer loop is a parfor loop (see [Matb], which also
contains a simple example).

For running parallel MATLAB programs one needs to know how to set the number of
workers (or cores) to be used. This requires the following steps:

• Open the MATLAB GUI and configure the local profile

– select Preferences

– select Parallel Computing Toolbox

– enter the Preferred number of workers in a parallel pool

• The number of workers n can be set in the MATLAB script with the parpool(n)
statement, see [Matc]. However, n cannot exceed the number set in the profile.

D5.1 Documentation of Recommendations 8/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

Chapter 4

Automatic Tuning Using a Black
Box Optimizer Tool

In Section 3.1, it was shown in connection with the use cases for R programs, how the
selection of an optimized Mathlib like OpenBLAS or MKL and an appropriate setting of
runtime options can improve the performance of R programs. For these experiments, the
various parameter combinations were manually examined. An obvious approach to avoid
the hassle of this manual process would be to group the steps set parameters → bench-
mark (for experiments without the need to (re-)build the parallel program) or the steps
set parameters → build → benchmark (if a build step is necessary) in order to automat-
ically perform benchmarks for all parameter combinations in the sense of a brute-force
approach. In principle, this could be done easily by the help of a small shell script, for
example. For a small number of parameters, this is easily possible and is described, for
example, in [GKJ17] for a simple climate time-stepped application based on stencil op-
erations to update grid-bound variables. Parameters were varied for compiler selection
(clang or gcc), the compiler optimization level and for the usage of Profile Guided Opti-
mization (PGO) techniques. The emphasis there was on finding good parameter settings
to reduce the compile times. But with an increasing number of parameters the search
space increases exponentially and a brute-force search is then no longer suitable.

Aside from choosing the most appropriate compiler (GNU, Intel, PGI, ...) in the most
suitable version (latest version, second latest version, ...) and in the most appropriate
combination with an MPI environment (Intel MPI, Open-MPI, ...) there are many other
runtime options, for example for the selection of the algorithm for collective MPI oper-
ations (e.g., Recursive doubling, Rabenseifner’s, Reduce Bcast, ... for MPI_Allreduce),
for process pinning and mapping, or for the use of hyper-threading. In addition, there
are possibly application specific options, e.g., for partitioning and tiling. Due to this
consideration and with the experience in manually tuning R programs we looked for a
better solution and came up with the idea of using a Black Box Optimizer tool, which
is based on genetic algorithms, to tune a wide range of optimization parameters auto-
matically and efficiently. Such a tool was successfully used to find best input parameter
values automatically with regard to a certain optimal behavior of a coupled system sim-
ulating the different processes at an airport [HKMW14]. The corresponding framework
approach for the simulation based optimization using genetic algorithms was proposed
in the context of the BMBF (Bundesministerium für Bildung und Forschung/Federal Min-
istry of Education and Research) cluster of excellence project “Efficient Airport 2030”
[HKMW14].

In this case, the combination of the build- and subsequent benchmark step can be

D5.1 Documentation of Recommendations 9/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

regarded as a simulation model or black box, respectively. By choosing suitable input
parameters, the Black Box Optimizer attempts to minimize the runtime of the parallel
program. Such input parameters control the effective build step (compiler-, version- and
MPI selection, optimization level, ...) and the further setting of suitable runtime options
(e.g., to tune the MPI configuration). The build step is optional for pre-compiled appli-
cations and allows finding the best setting for application specific options, for example,
for the domain decomposition by an appropriate partitioning and tiling.

For manual tuning, one typically iterates only over meaningful combinations of op-
timization parameters. But this would remain burdensome and requires above all ex-
pert knowledge. Promising parameter settings could be determined based on educated
guesses or – if applicable – via time consuming profiling of the program. However, good
combinations might get overlooked in manual analysis.

First, the basic principle of the simulation-based optimization method based on ge-
netic algorithms shall be briefly explained.

4.1 Simulation-based Optimization with Genetic Algorithms

The ideas in this section go back to a framework approach which was proposed in
the context of the BMBF (Bundesministerium für Bildung und Forschung/Federal Min-
istry of Education and Research) cluster of excellence project “Efficient Airport 2030”
[HKMW14].

The simulation-based optimization has to find a set of values for the input parame-
ters with regard to a given objective function. This function evaluates the simulation
run in a certain way and delivers a measure for the quality of the current set of input
parameter values. A very simple optimization problem might be to find optimal values
for two integer parameters in the interval of 0 to 9. The first approach to solve the
problem would be a brute-force algorithm that explores all possible combinations, runs
the simulation model for all these (100) input vectors, calculates the objective function,
and thus determines the optimum by a brute-force approach. But as already mentioned,
such a brute-force approach is not suitable for practical use, because the number of
combinations grows exponentially with the number of input parameters.

For real problems, more efficient search strategies are used, and genetic algorithms
have proven successful in the past. Genetic algorithms mimic the process of natural
evolution. They are part of the evolutionary algorithms and are used to find solutions to
optimization problems by using techniques inspired by natural evolution, such as inheri-
tance, mutation, selection, and crossover [Gol89]. In a genetic algorithm, a population of
candidate solutions evolves towards better solutions. Mimicking the natural evolution,
better solutions may be found without any knowledge of how to analytically solve the
underlying problem. Zadeh [Zad94] introduced the term Soft Computing for methods
such as fuzzy logic, artificial neural networks, and evolutionary algorithms to get a clear
distinction from the classical Hard Computing, which is based on precision, certainty
and analytical model. In contrast to the classical methods, Soft Computing is tolerant
towards phenomena like vagueness, non-linearity or incomplete information, which are
common for prediction problems.

Genetic algorithms are an appropriate method for solving complex optimization prob-
lems which are not solvable with analytical methods. A specific combination of parame-
ters (known as genes) is named an individual or chromosome. The basic idea is to select
and combine two good solutions to produce a still better solution by applying the genetic
operations crossover (i.e., exchanging genes of the parents) and mutation (i.e., slightly

D5.1 Documentation of Recommendations 10/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

Optimization Web
Service Request

Create internal
Data Structures

Use Genetic
Algorithm

Convert internal
Results to XML

Return Web
Service Result

General Sequence

Initial Solution
Crossover, Muta-

tion, Selection
Evaluation of

Solutions Optimal Solution

Genetic Algorithm

Scheduler
Create Web

Service Requests Load Balancer
Collect Web

Service Results

Distributed Simulation Runs /
Evaluation of Solutions

Create Web
Service Requests

Create Web
Service Requests

 Web Service

 Web Service

 Web Service

 Web Service

Figure 4.1: Framework Architecture of the Black Box Optimizer

modifying a gene with a low random probability). The optimization process starts with
a set of (typically randomly created) individuals (known a population) which is named
initial solution. New generations of solutions are produced until a sufficiently good so-
lution has been found or the solution cannot be further improved. But nevertheless, the
problem of exponential growth still remains for the more efficient search strategies. Fur-
thermore, a single simulation run (e.g., building and benchmarking a parallel application
for a specific parameter setting) usually requires a significant amount of CPU time. This
leads to a demand for high performance computing systems and parallel algorithms for
the simulation based optimization.

Figure 4.1 shows the framework architecture of the Black Box Optimizer. The op-
timization framework is based on Web Services [W319] and the use of XML standards
for the exchange of structured data. Firstly, the input parameters of the optimization
request are transformed to internal structures. The configuration for each simulation
model is provided by the Web Service. The optimization step is performed by a ge-
netic algorithm running identical simulation instances in parallel to determine the ob-
jective function for the different chromosomes. A scheduler creates the corresponding
distributed Web Service requests and a load balancer component ensures a uniform
utilization of the processing elements available in the cluster. The main benefit of the
architecture lies in way that interfaces between these different levels are designed and
especially in their independence from a specific simulation model and – in principle –
the optimization algorithm used. The Black Box Optimizer is available as a Web Service
itself in analogy to today’s widespread “Everything as a service” paradigm [BFB+11].

4.2 First Tuning Experiments

The Black Box Optimizer tool is comfortable to use. The Web Services shown behind the
load balancer in Figure 4.1 in Section 4.1 are implemented by a simple bash script that
takes an actual setting of parameters on how to build and benchmark the parallel appli-
cation to tune. After the simulation model has been made available as a Web Service,

D5.1 Documentation of Recommendations 11/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

it is simply required to configure the genetic algorithm (mutation probability, crossover
probability, population size, generations, ...) and specify the Web Service interface de-
scription of the simulation model (i.e., to describe the parameters of the bash script).
Furthermore, a list of worker components can be specified in order to execute identical
copies of the bash script by the Black Box Optimizer in different working directories in
parallel. A small number of worker components can be used to limit the number of simul-
taneously active jobs in the job queue in order to avoid using too many cluster nodes for
the experiments at once. The workload manager used for the experiments was SLURM
and jobs are submitted via a sbatch command, which is finally performed by the bash
script to benchmark the parallel application.

With a first parallel test program to calculate π (contained in the download pack-
age of the MPICH implementation of MPI [MPI19]) a feasibility study was performed to
examine the suitability of the Black Box Optimizer tool for an automated tuning of par-
allel applications in practice. Table 4.1 shows the input parameters we selected for this
experiment and the meaning of their values.

Tabelle1

Seite 1

Input Parameter Value Meaning
1 CompilerSelection 1 GCC

 2 Intel
 3 PGI

2 CompilerGeneration 1 latest, i.e. GCC 8, Intel 19, or PGI 18
 2 second latest, i.e. GCC 6, Intel 18, or PGI 17
 3 third latest, i.e. GCC 5, Intel 17, or PGI 16
 4 fourth latest, i.e. GCC 4, Intel 16, or PGI 15
 (depending on CompilerSelection)

3 MPISelection 1 Open-MPI
2 Intel MPI

4 OptimizationLevel 0 -O0
1 -O1
2 -O2
3 -O3
4 GCC: -Ofast, Intel: -fast, or PGI: -fast

5 UseProfileGuidedOptimzation 0 PGO off
1 PGO on

6 UseHyperthreading 0 HT off
1 HT on

Table 4.1: Input Parameters and Their Meaning for First Tuning Experiments

For a brute-force approach 480 = 3 ·4 ·2 ·5 ·2 ·2 benchmark runs would be required to
analyse all possible combinations of the 6 input parameters. The execution of the parallel
π program was configured to use four cluster nodes, each with 16 physical cores. For
the genetic algorithm we chose a mutation probability of 5%, a crossover probability of
20%, and a population size of 20 as conservative defaults from the literature. Table 4.2
shows the best five chromosomes for generations 0..4 to give an impression of the search
behavior of the algorithm.

D5.1 Documentation of Recommendations 12/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

Tabelle1

Seite 1

PGO HT

0 1 GCC third latest Open-MPI 4 no yes 157
2 PGI third latest Open-MPI 0 yes yes 176
3 Intel third latest Intel MPI 1 no yes 191
4 Intel fourth latest Intel MPI 2 no yes 194
5 GCC latest Open-MPI 4 no no 201

1 1 GCC third latest Open-MPI 4 no yes 155
2 PGI second latest Open-MPI 1 yes yes 170
3 PGI second latest Open-MPI 4 no yes 181
4 GCC third latest Intel MPI 4 no yes 186
5 Intel third latest Intel MPI 3 no yes 187

2 1 GCC third latest Open-MPI 4 no yes 154
2 GCC third latest Open-MPI 4 no yes 155
3 GCC third latest Open-MPI 4 no yes 156
4 GCC third latest Open-MPI 4 no yes 158
5 GCC third latest Open-MPI 4 no yes 160

3 1 GCC second latest Open-MPI 4 no yes 151
2 GCC second latest Open-MPI 4 no yes 151
3 GCC second latest Open-MPI 4 no yes 152
4 GCC third latest Open-MPI 4 no yes 154
5 GCC third latest Open-MPI 4 no yes 154

4 1 GCC second latest Open-MPI 4 no yes 149
2 GCC second latest Open-MPI 4 no yes 149
3 GCC third latest Open-MPI 4 no yes 152
4 GCC second latest Open-MPI 4 no yes 152
5 GCC second latest Open-MPI 4 no yes 152

Gen.
#

Chrom.
#

Compiler
Selection

Compiler
Generation

MPI
Selection

Opt.
Level

Runtime
Result [s]

Table 4.2: Best Five Chromosomes in Generations 0..4 for the Parallel π Calculation

The Black Box Optimizer already found a stable best solution in the 3rd generation,
which is detected in Generation 4, after 100 = 5 · 20 benchmark runs for evaluating five
populations in total. It should be mentioned, however, that it is in the nature of the
genetic algorithm that it remains unknown if there exists a solution that is still better
than the one found. In practice this is only of minor importance, because the optimal
solution is usually only minimally better. For the tuning of the π application, we were
not able to achieve a better result with a manual approach. The slight differences in the
runtime results for individuals representing the same input parameters fall within typical
differences when benchmarks are executed in a cluster system on different nodes of the
same type as in our case.

While the π calculation was characterized by floating point calculations, we chose for
the second test program a simple parallel solver for boolean satisfiability problems (SAT)
from the artificial intelligence (AI) domain. It is based on integer arithmetic and does
an exhaustive search of all 2N possibilities for a logical function of N logical arguments
(see [Bur19] with reference to [Qui03]). The execution of the solver was configured to
use four cluster nodes, each with 16 physical cores. The configuration of the genetic
algorithm (mutation probability 5%, crossover probability 20%, population size 20) and
the 6 input parameters to optimize were the same as for the π calculation (resulting in
480 combinations, see also Table 4.1). The benchmark results are shown in Table 4.3.

D5.1 Documentation of Recommendations 13/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

Tabelle1

Seite 1

PGO HT
0 1 GCC third latest OpenMPI 4 no yes 154

2 Intel third latest Intel MPI 1 no yes 192
3 GCC third latest OpenMPI 3 yes no 194
4 PGI third latest OpenMPI 0 no yes 196
5 Intel fourth latest Intel MPI 2 no yes 196

1 1 GCC third latest Intel MPI 1 yes yes 151
2 GCC third latest OpenMPI 4 no yes 152
3 GCC third latest Intel MPI 4 no yes 153
4 PGI second latest OpenMPI 4 no yes 158
5 Intel third latest Intel MPI 3 no yes 184

2 1 GCC third latest Intel MPI 1 yes yes 149
2 GCC third latest Intel MPI 1 yes yes 149
3 GCC third latest Intel MPI 1 yes yes 150
4 GCC third latest OpenMPI 4 no yes 151
5 GCC third latest Intel MPI 3 no yes 152

Gen.
#

Chrom.
#

Compiler
Selection

Compiler
Generation

MPI
Selection

Opt.
Level

Runtime
Result [s]

Table 4.3: Best Five Chromosomes in Generations 0..2 for the Parallel SAT Solver

This time the Black Box Optimizer found a stable best solution already in the 1st
generation, which is detected in Generation 2 (by the confirmation of the best parameter
setting in Generation 1), after a total of 60 = 3 · 20 benchmarks for evaluating three
populations.

Because of the comparatively small search space in both experiments, good solutions
were already found in Generation 0 within the first 20 randomly chosen parameter set-
tings, so that only minor improvements were achievable for the succeding generations.
Anyway, the comparison of the best chromosomes for the calculation of π and solving a
SAT problem in Tables 4.2 and 4.3 shows by differences in the compiler generation, the
MPI selection, the optimization level, and in the usage of PGO that genetic algorithms
can be succesfully applied for tuning parallel programs from different domains.

4.3 Tuning Real Applications

The tuning results of the first two test programs were so promising that we decided to
switch to the automatic tuning of real applications quite early.

4.3.1 BQCD

For our first use case, we selected the BQCD (Berlin Quantum Chromodynamics) pro-
gram. BQCD is a Hybrid Monte Carlo program for simulating lattice QCD with dynamical
Wilson fermions [HNS19]. The development of BQCD was started in 1998 by Stüben for
the two flavour case and the original Wilson action [ABS18]. The sources are also avail-
able for download [ABS18]. BQCD can be regarded as a typical MPI program for which
the parallelization is based on the domain decomposition of the underlying lattice. Of
central importance for the performance is a suitable partitioning, i.e., the best mapping
of work to processing elements. In contrast to the first two experiments, the build step
is not included in the optimization. Table 4.1 shows the 8 input parameters we selected
for the BQCD experiments and the ranges of their values. These parameters are han-
dled internally by the BQCD program to control the mapping to processing elements and
some other functionalities of the program. For the sake of simplicity, we shall not go into

D5.1 Documentation of Recommendations 14/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

more detail of their meaning. Indeed, it is not even necessary, because also the Black
Box Optimizer modifies these parameters without any knowledge about their meaning.

Tabelle1

Seite 1

Input Parameter Value Meaning

1 ProcessesPerNodeLog2 0..5

2 P2DivisorIndex 0..5 Lattice Partitioning, Variable Dimension #1
3 P3DivisorIndex 0..5 Lattice Partitioning, Variable Dimension #2
4 HyperthreadMode 0..2 0=no, 1=one free, 2=use all
5 CGCloverMode 0..1 Internal BQCD Parameter
6 CGDMode 0..3 Internal BQCD Parameter
7 CGSpincolMode 0..1 Internal BQCD Parameter
8 UseSIMD 0..1 0=no, 1=yes

Giving ProcessesPerNode=2ProcessesPerNodeLog2

for nodes supporting max. 32 Hyperthreads

Table 4.4: Input Parameters and Their Value Ranges for the BQCD Tuning Experiments

For a brute-force approach 20736 = 6·6·6·3·2·4·2·2 benchmark runs would be required
to analyse all possible combinations of the 8 input parameters. The execution of BQCD
was configured to use 8 cluster nodes, each with 16 physical cores. For the genetic
algorithm we chose a mutation probability of 5%, a crossover probability of 20%, and a
population size of 100 (again as conservative defaults from the literature). The number
of generations was limited to 10. Table 4.5 shows the runtime results for the best, 10th
best, 20th best, and 50th best chromosome for generations 0..10 to give an impression
of the development of the runtime results.

Tabelle1

Seite 1

0 55.38 76.93 95.50 <invalid>
1 56.37 69.30 76.71 113.00
2 56.43 65.23 68.48 81.66
3 52.17 59.22 63.58 71.19
4 50.11 56.57 59.54 67.11
5 50.08 52.17 57.05 61.44
6 50.26 51.14 56.11 60.17
7 49.63 49.88 50.48 55.46
8 49.48 49.89 50.26 51.19
9 49.62 50.18 50.40 51.31
10 49.99 50.45 50.66 51.11

Gen.
#

Chrom.
Pos. 1 (best)

Chrom.
Pos. 10

Chrom.
Pos. 20

Chrom.
Pos. 50

Table 4.5: BQCD Runtime Results [s] for 4 Chromosome Positions in Generations 0..10

The best runtime result was achieved with 49.48s in Generation 8, which was about
10–15% faster than results achieved by manual parameter settings based on educated
guesses by the author of the BQCD program. The input parameters for this result are
shown in Table 4.6.

D5.1 Documentation of Recommendations 15/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

Tabelle1

Seite 1

Input Parameter Value Meaning
L1 (fixed) 32 Lattice Dimension 1
L2 (fixed) 12 Lattice Dimension 2
L3 (fixed) 12 Lattice Dimension 3
L4 (fixed) 24 Lattice Dimension 4

1 ProcessesPerNodeLog2 4
P1DivisorIndex (fixed) 0 Index in [1, 2, 4, 8, 16, 32], i.e. P1 = 1

2 P2DivisorIndex 3 Index in [1, 2, 3, 4, 6, 12], i.e. P2 = 4
3 P3DivisorIndex 3 Index in [1, 2, 3, 4, 6, 12], i.e. P3 = 4

P4 (calculated) 4 P4 = 4
4 HyperthreadMode 0 HT off
5 CGCloverMode 0 Index in [1, 2], i.e. Clover Value = 1
6 CGDMode 2 Index in [2, 21, 25, 35], i.e. D Value = 25
7 CGSpincolMode 1 Index in [1, 22], i.e. Spincol Value = 22
8 UseSIMD 1 SIMD Instructions Are Used

Processes Per Node = 24 = 16

Table 4.6: Best Parameter Setting for the BQCD Tuning Experiments

The search space seems still to be comparatively small, so a solution almost as good
was already found in Generation 4 and only minor improvements were achievable for
the succeeding generations. Nonetheless, the results for the 10th best, 20th best, and
50th best results are coming closer together for the higher generation numbers. This
indicates that there is at least a relative progress achieved, because the average fitness
of the populations is still increasing. In general, this effect will be potentially positive
for producing good descendants in further generations.

4.3.2 Fesom2

For the second use case, we selected the Fesom2 (Finite-Element/volumE Sea ice-Ocean
Model), a multi-resolution ocean general circulation model that solves the equations of
motion describing the ocean and sea ice using finite-element and finite-volume methods
on unstructured computational grids [Fes19]. The sources are available for download
via GitHub [Fes19]. Fesom2 can be regarded as a typical MPI program for which load
imbalances may play a role caused by the lack of structure of the grids. As with the
optimization of the π and SAT programs a build step is involved to determine the best
compiler, best compiler generation, and so on. Also considered for the tuning was the
binding and mapping of processes to processing elements at runtime as well as the tun-
ing of the MPI runtime environment to control for example how collective MPI operations
are handled. In total, two Fesom2 experiments were carried out: For the first experiment
the MPI parameters were tuned manually in advance and were additionally tuned by the
Black Box Optimizer for the second experiment. Table 4.7 shows the 9 input parameters
selected for the first Fesom2 experiment and the meaning of their values.

D5.1 Documentation of Recommendations 16/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

Tabelle1

Seite 1

Input Parameter Value Meaning
1 CompilerSelection 1 GCC

 2 Intel

2 CompilerGeneration 1 latest, i.e. GCC 8 or Intel 19
 2 second latest, i.e. GCC 6 or Intel 18
 3 third latest, i.e. GCC 5 or Intel 17
 (depending on CompilerSelection)

3 MPISelection 1 Open-MPI
2 Intel MPI

4 OptimizationLevel 2 -O2
3 -O3
4 GCC: -Ofast, Intel: -fast

5 UseProfileGuidedOptimzation 0 PGO off
1 PGO on

6 UseHyperthreading 0 HT off
1 HT on

7 MathlibSelection 1 MKL
2 OpenBLAS

8 ProcessBindingSelection 0 Default (i.e. parameter will not be explicitly specified)
1 none
2 bind process to core
3 bind process to hwthread
4 bind process to socket

9 ProcessMappingSelection 0 Default (i.e. parameter will not be explicitly specified)
1 blocked per node
2 cycling by node in a round-robin fashion
3 <ignored> (future extension)

Table 4.7: Input Parameters and Their Meaning for the First Fesom2 Experiment

For a brute-force approach 5760 = 2 ·3 ·2 ·3 ·2 ·2 ·2 ·5 ·4 benchmarks would be required
to analyse all possible combinations of the 9 input parameters. The execution of Fesom2
was configured to use 32 cluster nodes with 16 physical cores each. For the genetic
algorithm we choosed a mutation probabilty of 5%, a crossover probability of 20%, and a
population size of 30 as conservative defaults. The number of generations was limited to
10. Table 4.8 shows the runtime results for the best chromosome for generations 0..10.

Tabelle1

Seite 1

0 100.09
1 97.15
2 96.33
3 96.11
4 95.71
5 95.29
6 95.52
7 94.98
8 95.15
9 95.15
10 94.81

Gen.
#

Chrom.
Pos. 1 (best)

Table 4.8: Fesom2 Runtime Results [s] for Best Chromosome in Generations 0..10 (MPI
Parameters still manually tuned)

The best runtime result was achieved with 94.81s in generation 10, which is a per-
formance gain of about 5% in comparison to the best result in generation 0. The input

D5.1 Documentation of Recommendations 17/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

parameters for this result are shown in Table 4.9. The corresponding MPI parameters
that were set manually are shown in Table 4.10.

Tabelle1

Seite 1

Input Parameter Value Meaning
1 CompilerSelection 2 Intel
2 CompilerGeneration 2 second latest, i.e. Intel 18
3 MPISelection 2 Intel MPI
4 OptimizationLevel 3 -O3
5 UseProfileGuidedOptimzation 1 PGO on
6 UseHyperthreading 0 HT off
7 MathlibSelection 1 MKL
8 ProcessBindingSelection 0 Default (i.e. parameter will not be explicitly specified)
9 ProcessMappingSelection 0 Default (i.e. parameter will not be explicitly specified)

Table 4.9: Best Parameter Setting for the First Fesom2 Experiments

Tabelle1

Seite 1

Input Parameter Value Meaning
1 I_MPI_FALLBACK 1 enable
2 I_MPI_LARGE_SCALE_THRESHOLDLog2 13
3 I_MPI_DYNAMIC_CONNECTION 1 enable

Threshold = 213 = 8192

Table 4.10: Manually tuned MPI Parameters used for the First Fesom2 Experiments

The search space is still comparatively small, so a solution almost as good was already
found in generation 5, and only minor improvements were achievable for the succeeding
generations.

For the second Fesom2 experiment, several MPI runtime parameters were tuned in
addition to the parameters shown in Table 4.7. These parameters and their value ranges
are listed in Table 4.11 for Open-MPI and Table 4.12 for Intel MPI. For more detail,
please refer to the Open-MPI or Intel MPI documentation.

Tabelle1

Seite 1

Input Parameter Value Meaning
1 OMPI_MCA_coll 0..2 GCC
2 OMPI_MCA_coll_hcoll_enable 0..1 disable/enable
3 OMPI_MCA_coll_hcoll_priority 0..255 priority range

4 OMPI_MCA_coll_hcoll_npLog2 -1..5

5 HCOLL_ENABLE_MCAST_ALL 0..1 disable/enable
6 HCOLL_ENABLE_MCAST 0..1 disable/enable
7 HCOLL_ML_DISABLE_BARRIER 0..1 disable/enable
8 HCOLL_ML_DISABLE_IBARRIER 0..1 disable/enable
9 HCOLL_ML_DISABLE_BCAST 0..1 disable/enable

10 HCOLL_ML_DISABLE_REDUCE 0..1 disable/enable

-1 : Default (i.e. parameter will not be explicitly specified)
0..n: used for threshold calculation as 2n

Table 4.11: Additional Tunable Open-MPI Parameters and Their Value Ranges for the
Second Fesom2 Experiment

D5.1 Documentation of Recommendations 18/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

Tabelle1

Seite 1

Input Parameter Value Meaning
1 I_MPI_FALLBACK 0..1 disable/enable

2 I_MPI_LARGE_SCALE_THRESHOLDLog2 -1..20

3 I_MPI_DYNAMIC_CONNECTION 0..1 disable/enable

4 I_MPI_ADJUST_ALLGATHER -1..5

5 I_MPI_ADJUST_ALLREDUCE -1..12

6 I_MPI_ADJUST_BARRIER -1..9

7 I_MPI_ADJUST_BCAST -1..14

8 I_MPI_ADJUST_GATHER -1..4

9 I_MPI_ADJUST_GATHERV -1..3

10 I_MPI_ADJUST_REDUCE -1..11

-1 : Default (i.e. parameter will not be explicitly specified)
0..n: used for threshold calculation as 2n

-1 : Default (i.e. parameter will not be explicitly specified)
0: optimized default, 1..5: algorithm selection

-1 : Default (i.e. parameter will not be explicitly specified)
0: optimized default, 1..12: algorithm selection

-1 : Default (i.e. parameter will not be explicitly specified)
0: optimized default, 1..9: algorithm selection

-1 : Default (i.e. parameter will not be explicitly specified)
0: optimized default, 1..14: algorithm selection

-1 : Default (i.e. parameter will not be explicitly specified)
0: optimized default, 1..4: algorithm selection

-1 : Default (i.e. parameter will not be explicitly specified)
0: optimized default, 1..3: algorithm selection

-1 : Default (i.e. parameter will not be explicitly specified)
0: optimized default, 1..11: algorithm selection

Table 4.12: Additional Tunable Intel MPI Parameters and Their Value Ranges for the
Second Fesom2 Experiment

With these additional MPI Parameters, a brute-force approach would require several
billion benchmarks to analyse all possible combinations of all input parameters. The
execution of Fesom2 was configured again to use 32 cluster nodes, each with 16 physical
cores. For the genetic algorithm we also chose, as before, a mutation probability of 5%,
a crossover probability of 20%, and a population size of 150 as conservative defaults.
The development of the runtimes was very similar to the results of the first experiment
shown, in Table 4.8. In Generation 4 a runtime result of 94.84s was achieved (stated
here as an individual result). The input parameters for this best result are shown in
Table 4.13. The corresponding MPI parameters that were also tuned automatically are
shown in Table 4.14.

Tabelle1

Seite 1

Input Parameter Value Meaning
1 CompilerSelection 2 Intel
2 CompilerGeneration 2 second latest, i.e. Intel 18
3 MPISelection 2 Intel MPI
4 OptimizationLevel 3 -O3
5 UseProfileGuidedOptimzation 1 PGO on
6 UseHyperthreading 0 HT off
7 MathlibSelection 2 OpenBLAS
8 ProcessBindingSelection 0 Default (i.e. parameter will not be explicitly specified)
9 ProcessMappingSelection 0 Default (i.e. parameter will not be explicitly specified)

Table 4.13: Best Parameter Setting for the Second Fesom2 Experiments

Tabelle1

Seite 1

Input Parameter Value Meaning
1 I_MPI_FALLBACK 1 enable
2 I_MPI_LARGE_SCALE_THRESHOLDLog2 15
3 I_MPI_DYNAMIC_CONNECTION 1 enable
4 I_MPI_ADJUST_ALLGATHER -1
5 I_MPI_ADJUST_ALLREDUCE -1
6 I_MPI_ADJUST_BARRIER 4 Algorithm: Topology aware recursive doubling
7 I_MPI_ADJUST_BCAST 5 Algorithm: Topology aware recursive doubling
8 I_MPI_ADJUST_GATHER 4 Algorithm: Binomial with segmentation
9 I_MPI_ADJUST_GATHERV 3 Algorithm: Knomial
10 I_MPI_ADJUST_REDUCE -1

Threshold = 215 = 32768

-1 : Default (i.e. parameter will not be explicitly specified)
-1 : Default (i.e. parameter will not be explicitly specified)

-1 : Default (i.e. parameter will not be explicitly specified)

Table 4.14: Best MPI Parameters setting for the Second Fesom2 Experiments

In the past, Fesom2 was solely tuned manually. The actual best result from the first
Fesom2 experiment showed that the Black Box optimization yields comparable results

D5.1 Documentation of Recommendations 19/25

CHAPTER 4. AUTOMATIC TUNING USING A BLACK BOX OPTIMIZER TOOL

to those achieved on expert knowledge and profiling, e.g., to manually tune MPI set-
tings for the communication patterns detected. The best result from the second Fesom2
experiment is, in turn, comparable to the best result from the first experiment. This
shows that the Black Box Optimizer automatically finds also equivalent settings for the
MPI runtime environment that are comparable to the ones found by the time-consuming
manual tuning.

D5.1 Documentation of Recommendations 20/25

CHAPTER 5. SUMMARY AND CONCLUSIONS

Chapter 5

Summary and Conclusions

We have successfully started our study by manually improving the performance for sev-
eral use cases based on the statistics package R, along with using efficient libraries like
OpenBLAS or MKL, setting appropriate runtime options, and parallelizing loops with the
foreach() paradigm in OpenMP and MPI environments. In Use Case A, the R Bench-
mark 2.5 test suite was employed. The a compiler optimization level of -O3 gave the
best results, whereas using Profile Guided Optimization (PGO) was not beneficial. The
speedup results for MKL were usually minimally better than those achieved with Open-
BLAS, whereas only little additional speedup could be achieved using several threads for
the mathlibs (about 15% and 18% compared to a single core for OpenBLAS and MKL,
respectively). Using one core on a single cluster node we achieved a speedup of nearly
5 compared to results achieved with the default mathlib used by the R package.

Experiments for Use Case B were carried out with the rlassoEffects-regression func-
tion and two problem sizes and for Use Case C with a program for analyzing satellite
night images. For both use cases, the performance was improved by parallelizing appro-
priate loops with the foreach() paradigm. For the bigger problem size in Use Case B, we
achieved a speedup of 30 on four cluster nodes, each node using 16 cores, and for Uses
Case C a speedup of 126 on 32 cluster nodes, each node using four cores. A limiting
factor was that R replicates its memory in every parallel instance. For Use Case B and C,
we also conducted co-development with users to identify weaknesses in the performance
of the existing implementation. The performance engineering know-how acquired this
way was successfully transferred.

For Gaussian and MATLAB we have tested and documented how to run these pro-
grams in parallel.

For the examination of the three R use cases, the tuning workflows were performed
manually. Although this was suitable to produce good tuning results, it turned out to
be much more time consuming than anticipated. The reasons for this are obvious: the
number of combinations grows up exponentially with the number of tuning parameters
that can be modified and benchmarking all combinations of a huge search space is not
possible in practice. Thus, typically only promising combinations are executed based on
educated guesses and/or time consuming profiling the application. Furthermore, expert
and domain specific knowledge is required for the manual approach and nevertheless
good parameter combinations might still get overlooked. For this reason, we performed
a series of experiments with a Black Box Optimizer tool, based on genetic algorithms,
in order to tune parallel programs automatically. Genetic algorithms are widely used in
practice as a strategy to reduce huge search spaces efficiently.

Initially, we successfully tuned a MPI test program to calculate π and another pro-

D5.1 Documentation of Recommendations 21/25

CHAPTER 5. SUMMARY AND CONCLUSIONS

gram to solve boolean satisfiability problems. In comparison with the estimated effort
of a brute-force search, the Black Box Optimizer found good solutions for the 6 tunable
parameters examined (compiler selection, compiler generation selection, MPI selection,
optimization level, PGO usage, and hyper-threading usage) almost immediately for both
test programs. Two interesting observations were that the latest compiler generation is
not always the fastest and that hyper-threading and Profile Guided Optimization (PGO)
are sometimes helpful.

BQCD was selected as a first representative use case of a real MPI application that is
based on an efficient domain decomposition of the underlying lattice and an appropriate
mapping of work to processing elements of the cluster. For a brute-force approach,
20736 benchmark runs would have been required to analyse all possible combinations
of the 8 parameters that were selected for tuning. The Black Box Optimizer found a
good parameter setting already in Generation 8 after benchmarking 900 BQCD runs.
The runtime of this parameter setting was actually about 10–15% shorter than runtimes
achieved with parameter settings based on educated guesses.

Fesom2 was selected as a second representative use case of a real MPI application
for which load imbalances caused by the lack of structure of the grids are typical. For
the tuning the Black Box Optimizer was used again to find best parameters. This time,
ten MPI runtime parameters were additionally tuned, which had previously to be done
in a traditional way by the help of expert knowledge and profiling. This led to a resulting
search space which contained several billion feasible solutions. Whilst in this case a
brute-force search is out of the question, the Black Box Optimizer found in Generation 4
after executing 750 Fesom2 a parameter setting that are as good as the ones found in
the past by manual tuning.

Originally, it was planned in WP5 to tune parallel programs also with regard to their
I/O behavior, which did not apply to BQCD and Fesom2, because options for choice of file
sizes and numbers of files, or use of I/O hardware only play a minor role for them. But as
a result of the positive experience using a genetic algorithm to improve the performance
of parallel programs so far it can be reasonably assumed that the performance of a paral-
lel program providing appropriate I/O tuning parameters can be improved automatically
in the same way.

To summarize the advantages of an automated tuning with the Black Box Optimizer in
comparison with the traditional manual approach, it can be noted that genetic algorithms
represent a generic approach to reduce huge search spaces drastically, that no expert
knowledge for tuning is required anymore, and that the Black Box Optimizer was easy
to use. Consideration must, however, be given to the fact that tuning with the new
approach requires a certain amount of CPU resources for the benchmarks. Automated
tuning will be particularly useful, if short-running benchmarks and a small number of
cluster nodes are sufficient to tune the parallel program in a representative way, so the
best parameter setting found also applies for long runtimes of the program using a larger
number of cluster nodes. Break-even considerations can be used to assess the effort for
the tuning in relation to the achievable savings expected.

Acknowledgement

The PeCoH project has received funding from the German Research Foundation (DFG)
under grants LU 1353/12-1, OL 241/2-1, and RI 1068/7-1.

D5.1 Documentation of Recommendations 22/25

CHAPTER 5. SUMMARY AND CONCLUSIONS

D5.1 Documentation of Recommendations 23/25

BIBLIOGRAPHY

Bibliography

[ABS18] M. Allalen, M. Brehm, and H. Stüben. Berlin quantum chromodynamics pro-
gram (BQCD) — source code download. https://www.rrz.uni-hamburg.
de/services/hpc/bqcd, 2018.

[BFB+11] P. Banerjee, R. Friedrich, C. Bash, P. Goldsack, B. Huberman, J. Manley,
C. Patel, P. Ranganathan, and A. Veitch. Everything as a service: Powering
the new information economy. IEEE Computer, 44(3):36–43, 2011.

[Bur19] John Burkardt. Circuit satisfiability using MPI — home page. https://
people.sc.fsu.edu/~jburkardt/c_src/satisfy_mpi/satisfy_mpi.html,
2019.

[Fes19] Fesom2. Finite-element/volume sea ice-ocean model — home page. https:
//fesom.de/models/fesom20/, 2019.

[Gaua] Gaussian documentation. http://gaussian.com/options/?tabid=1.

[Gaub] Gaussian documentation. http://gaussian.com/relnotes/?tabid=3.

[Gauc] Gaussian documentation. http://gaussian.com/running/?tabid=4.

[Gaud] Gaussian documentation. http://gaussian.com/running/?tabid=3.

[Gaue] Gaussian documentation. http://gaussian.com/running/?tabid=0.

[Gau19] Gaussian. Expanding the limits of computational chemistry — home page.
https://gaussian.com/, 2019.

[GKJ17] Anja Gerbes, Julian Kunkel, and Nabeeh Jumah. Intelligent Selection of Com-
piler Options to Optimize Compile Time and Performance — project poster.
In Euro LLVM 2017 (March 27 — 28, 2017). Saarbrücken, Germany, 2017.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1st edition, 1989.

[HK18] Kai Himstedt and Julian Kunkel. D1.1 annual report. Deliverable — on-
line available via the PeCoH project webpage https://wr.informatik.
uni-hamburg.de/research/projects/pecoh/start, 2018.

[HKMW14] Kai Himstedt, Steven Köhler, Dietmar P. F. Möller, and Jochen Wittmann.
Ein Framework-Ansatz für die simulationsbasierte Optimierung auf High-
Performance-Computing-Plattformen. In Jochen Wittmann and Dimitris K.
Maretis, editors, Simulation in Umwelt- und Geowissenschaften. Workshop
Osnabrück 2014, pages 109–122. Shaker Verlag, Aachen, 2014.

D5.1 Documentation of Recommendations 24/25

https://www.rrz.uni-hamburg.de/services/hpc/bqcd
https://www.rrz.uni-hamburg.de/services/hpc/bqcd
https://people.sc.fsu.edu/~jburkardt/c_src/satisfy_mpi/satisfy_mpi.html
https://people.sc.fsu.edu/~jburkardt/c_src/satisfy_mpi/satisfy_mpi.html
https://fesom.de/models/fesom20/
https://fesom.de/models/fesom20/
http://gaussian.com/options/?tabid=1
http://gaussian.com/relnotes/?tabid=3
http://gaussian.com/running/?tabid=4
http://gaussian.com/running/?tabid=3
http://gaussian.com/running/?tabid=0
https://gaussian.com/
https://wr.informatik.uni-hamburg.de/research/projects/pecoh/start
https://wr.informatik.uni-hamburg.de/research/projects/pecoh/start

BIBLIOGRAPHY

[HNS19] T.R. Haar, Y. Nakamura, and H. Stüben. BQCD manual. https://www.rrz.
uni-hamburg.de/services/hpc/bqcd, 2019.

[Mata] Matlab documentation: Parallel computing. https://mathworks.com/help/
parallel-computing/.

[Matb] Matlab documentation: parfor. https://mathworks.com/help/
parallel-computing/parfor.html.

[Matc] Matlab documentation: parpool. https://mathworks.com/help/
parallel-computing/parpool.html.

[Mat19] MatLab. Math. graphics. programming. — home page. https://www.
mathworks.com/products/matlab, 2019.

[MPI19] MPICH. A high performance and widely portable implementation of the
message passing interface (MPI) standard — home page. https://www.
mpich.org/, 2019.

[Qui03] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP.
McGraw-Hill Education Group, 2003.

[SCH18] Martin Spindler, Victor Chernozhukov, and Christian Hansen. hdm: High-
dimensional metrics. https://cran.r-project.org/web/packages/hdm/
index.html, 2018.

[Urb18] Simon Urbanek. R Benchmark 2.5. http://r.research.att.com/
benchmarks/R-benchmark-25.R, 2018.

[W319] W3. World Wide Web consortium – web services activity. https://www.w3.
org/2002/ws, 2019.

[Wes17] Steve Weston. Introduction to doMPI. https://cran.r-project.org/web/
packages/doMPI/vignettes/doMPI.pdf, 2017.

[Zad94] Lotfi A. Zadeh. Fuzzy logic, neural networks, and soft computing. Commun.
ACM, 37(3):77–84, March 1994.

D5.1 Documentation of Recommendations 25/25

https://www.rrz.uni-hamburg.de/services/hpc/bqcd
https://www.rrz.uni-hamburg.de/services/hpc/bqcd
https://mathworks.com/help/parallel-computing/
https://mathworks.com/help/parallel-computing/
https://mathworks.com/help/parallel-computing/parfor.html
https://mathworks.com/help/parallel-computing/parfor.html
https://mathworks.com/help/parallel-computing/parpool.html
https://mathworks.com/help/parallel-computing/parpool.html
https://www.mathworks.com/products/matlab
https://www.mathworks.com/products/matlab
https://www.mpich.org/
https://www.mpich.org/
https://cran.r-project.org/web/packages/hdm/index.html
https://cran.r-project.org/web/packages/hdm/index.html
http://r.research.att.com/benchmarks/R-benchmark-25.R
http://r.research.att.com/benchmarks/R-benchmark-25.R
https://www.w3.org/2002/ws
https://www.w3.org/2002/ws
https://cran.r-project.org/web/packages/doMPI/vignettes/doMPI.pdf
https://cran.r-project.org/web/packages/doMPI/vignettes/doMPI.pdf

	Relation to the Project
	Introduction
	Traditional Tuning
	Three Use Cases for R Programs
	Using Gaussian in an HPC Environment
	Using MATLAB in an HPC Environment

	Automatic Tuning Using a Black Box Optimizer Tool
	Simulation-based Optimization with Genetic Algorithms
	First Tuning Experiments
	Tuning Real Applications
	BQCD
	Fesom2

	Summary and Conclusions

