
Introduction Container Library Container Tools FUSE Container File System Evaluation

Container Library and FUSE Container File
System

Softwarepraktikum für Fortgeschrittene

Michael Kuhn

Parallele und Verteilte Systeme
Institut für Informatik

Ruprecht-Karls-Universität Heidelberg

2008-02-29

1 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

1 Introduction
Introduction
Requirements

2 Container Library

3 Container Tools

4 FUSE Container File System

5 Evaluation

2 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

Introduction

An attempt to decrease the metadata overhead is to maintain
a reduced set of metadata files

This usually has to be done manually

Available file systems do not permit the user to change which
metadata is stored

One approach is to pack them together in one file – a
container

The file system only manages metadata for one file

Within this container, the files and their corresponding
metadata can be managed arbitrarily

3 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

Requirements

The container format should enable random access to provide
access times independent of the position of a file within the
container

Existing formats are insufficient

The tar format does not provide random access
The iso format stores too much metadata

Therefore a new container format was designed and
implemented by Hendrik Heinrich

This existing implementation was used as a basis for all work
presented here

4 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

1 Introduction

2 Container Library
License
General Overhaul
New Features

3 Container Tools

4 FUSE Container File System

5 Evaluation

5 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

License

The container library was not licensed in any way

This made future development and usage difficult

It has been licensed under a 2-clause BSD license in
agreement with the original author

6 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

General Overhaul

The library was completely overhauled

It now provides consistently named functions and data types

The comments within the code were modified to allow the
automatic generation of an API documentation with Doxygen

7 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

New Features

Architecture Independence

The original implementation did not honor the different sizes
of data types on 32 and 64 bit architectures

This made it impossible to use a container created with a 32
bit version of the library with a 64 bit version and vice versa

By using datatypes of a fixed size the containers can now be
used on both 32 and 64 bit architectures without problems

The size of the metadata structures used in the library is now
independent of the architecture

C pads structures for better memory alignment

8 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

New Features

Thread-Safety

The library was not thread-safe in its original form

It uses a shared file pointer for all files in a container
The functions read and write were used in combination with
lseek

The library was modified to use the pread and pwrite

functions that do not modify the shared file pointer

It can now be used safely in multi-threaded applications

9 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

New Features

Write Support

The original version of the container library lacked an
easy-to-use method to create containers

A convenient interface to add new files was added to the
library

Either from memory with ct file create buffer

Or from an existing file with ct file create path

There are currently also “fast” versions of these functions

10 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

New Features

File Hashing

File data stored in the container is protected from silent
corruption

Currently a SHA-1 hash of it is stored along with its metadata

This also needs to be done for the metadata

11 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

1 Introduction

2 Container Library

3 Container Tools
Overview
Tools

4 FUSE Container File System

5 Evaluation

12 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

Overview

Five tools to work with containers on the command line

ctcat

ctcp

ctls

ctmk

ctpc

13 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

Tools

ctcat

Print the contents of a file in a container to stdout

ctcp

Copy a file from a container to a local file system

ctls

Print the names of all files in a container
Optionally also print their hashes or sizes

ctmk

Create a new container with all files in a given directory

ctpc

Copy a file from a local file system to a container

14 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

1 Introduction

2 Container Library

3 Container Tools

4 FUSE Container File System
Motivation
Realization

5 Evaluation

15 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

Motivation

There are legacy applications that use the POSIX API and
can not be ported

It may be too much work to port them
Or the source code is not available at all

Provide POSIX access to containers

The easiest way to do this is to write a FUSE file system

16 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

Realization

Provide an overlay file system

The whole underlying file system is accessible
Directories are handled normally – as directories
Files are handled as containers – that is, also as directories

For example

ctfs is mounted at /ctfs
There is a container available as /storage/stuff.ct

All files within this container would be available in the
directory /ctfs/storage/stuff

There is more room for optimization

Does two stat() calls for each container file
One can be eliminated easily

17 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

1 Introduction

2 Container Library

3 Container Tools

4 FUSE Container File System

5 Evaluation
Evaluation

18 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

Evaluation

POSIX ctfs ct
0

5

10

15

20

25

30

35

40

45

Without Metadata (First Execution)

10,000
100,000
1,000,000

T
im

e 
(in

 s
ec

on
d

s)

19 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

Evaluation

POSIX ctfs ct
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Without Metadata

10,000
100,000
1,000,000

T
im

e 
(in

 s
ec

on
d

s)

20 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

Evaluation

POSIX ctfs ct
0

100

200

300

400

500

600

700

With Metadata (First Execution)

10,000
100,000
1,000,000

T
im

e 
(in

 s
ec

on
ds

)

21 / 22



Introduction Container Library Container Tools FUSE Container File System Evaluation

Evaluation

POSIX ctfs ct
0

20

40

60

80

100

120

140

160

180

With Metadata

10,000
100,000
1,000,000

T
im

e 
(in

 s
ec

on
d

s)

22 / 22


	Introduction
	Introduction
	Requirements

	Container Library
	License
	General Overhaul
	New Features

	Container Tools
	Overview
	Tools

	FUSE Container File System
	Motivation
	Realization

	Evaluation
	Evaluation


