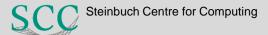
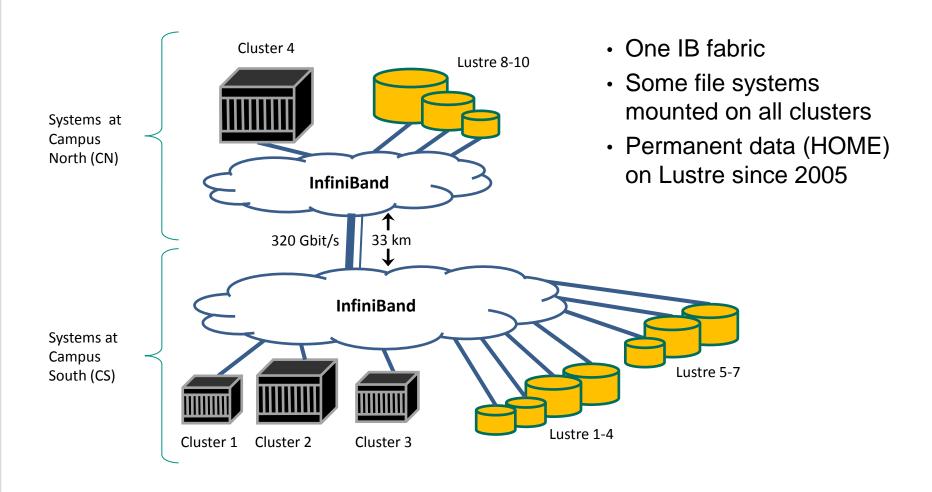


Extraordinary HPC file system solutions at KIT


Roland Laifer

STEINBUCH CENTRE FOR COMPUTING - SCC

Overview



- Lustre systems at KIT
 - and details of our user base
- Using Lustre over a 30 km InfiniBand connection
- Lightweight I/O statistics with Lustre
 - Helpful for users and administrators
- Disaster recovery for huge file systems
 - We recently had to use it

Lustre systems at KIT - diagram

Lustre systems at KIT - details

System name	pfs2	pfs3	pfs4
Users	universities, all clusters	universities, tier 2 cluster (phase 1)	universities, tier 2 cluster (phase 2)
Lustre server	DDN	DDN	DDN
version	Exascaler 2.3	Exascaler 2.4	Exascaler 2.3
# of clients	3100	540	1200
# of servers	21	17	23
# of file systems	4	3	3
# of OSTs	2*20, 2*40	1*20, 2*40	1*14, 1*28, 1*70
Capacity (TiB)	2*427, 2*853	1*427, 2*853	1*610, 1*1220, 1*3050
Throughput (GB/s)	2*8, 2*16	1*8, 2*16	1*10, 1*20, 1*50
Storage hardware	DDN SFA12K	DDN SFA12K	DDN ES7K
# of enclosures	20	20	16
# of disks	1200	1000	1120

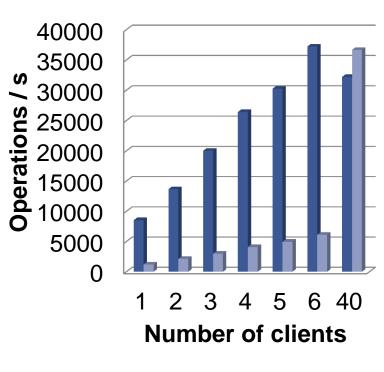
bwHPC

Baden-Württemberg's implementation strategy for HPC

0: European HPC center Hazel Hen 1: National HPC center 2: Supraregional HPC center IUSTUS 3: Regional HPC center bwUniCluster aka HPC enabler NEMO

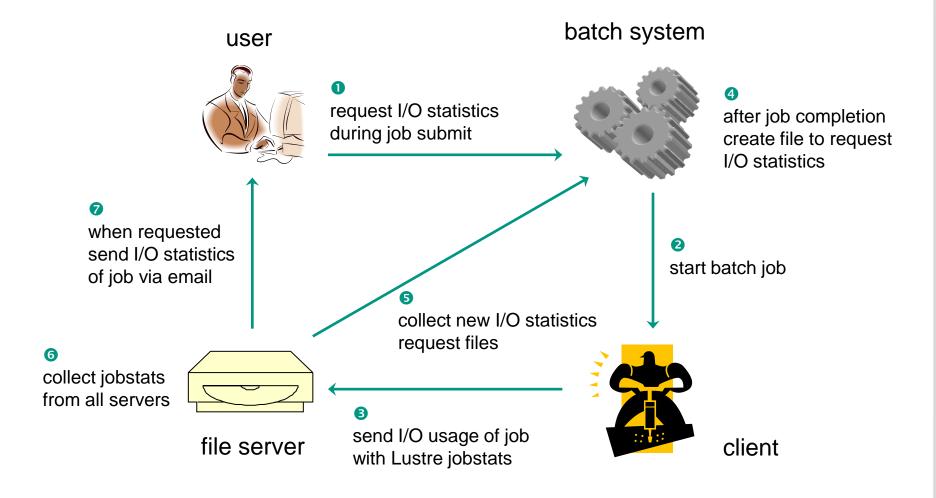
What is special with our tier 2 / tier 3 systems?

- Scalability of applications
 - Still lots of applications which only scale up to 10s of nodes
 - Higher level I/O libraries (HDF5, ...) rarely used
 - File per process is beneficial
 - Usually less than 10K cores, file system can quickly handle 10 K files
 - Omits locking conflicts with writes from many clients to single file
- User community
 - Hundreds active users and running batch jobs
 - Many students and employees from 9 Baden-Württemberg universities
 - Many less experienced users
 - No experience with Linux
 - Just use an existing program (Matlab, ...)
 - Result is a lot of bad I/O



Using Lustre over a 30 km IB connection

- 320 Gbit/s delivered by8 Mellanox MetroX IB switches
 - Up to now no downtime due to long distance connection
- Feels like working locally
 - No reduction in throughput performance
- Some metadata operations loose factor 3
 - See diagram on right side
 - With many clients delay on server is dominating


File creation with 2 tasks per client

■ Clients CN
■ Clients CS

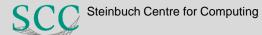
Lightweight I/O statistics – diagram

Lightweight I/O statistics – example email

Subject: Lustre stats of your job 1141 on cluster xyz

Hello,

this is the Lustre IO statistics as requested by user john_doe on cluster xyz for file system home.

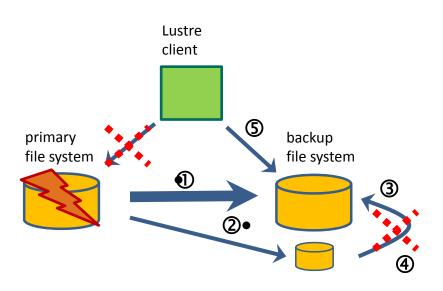

Job 1141 has done ...

- ... 1 open operations.
- ... 1 close operations.
- ... 1 punch operations.
- ... 1 setattr operations.
- ... 10 write operations and sum of 10,485,760 byte writes (min IO size: 1048576, max IO size: 1048576).

Lightweight I/O statistics – experiences

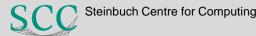
- No negative impact of jobstats activation
 - Running since 2 years
- Users do not care much about their I/O usage
 - Tool is not frequently used
 - Much better: Actively alert users about bad I/O usage
- Run another perl script to find jobs with high I/O usage
 - Collects and summarizes jobstats from all servers
 - Reports job IDs over high water mark for read/write or metadata operations
 - Extremely useful for administrator to identify bad file system usage
- Download our perl scripts to get Lustre I/O statistics
 - See jobstats chapters (6.2.7 and 6.2.8) at http://wiki.lustre.org/Lustre_Monitoring_and_Statistics_Guide

Disaster recovery – problem statement


- A disaster can be caused by
 - hardware failure, e.g. a triple disk failure on RAID6
 - silent data corruption caused by hardware, firmware or software
 - complete infrastructure loss, e.g. caused by fire or flood
- Timely restore of 100s TB does not work
 - Transfer takes too long and rates are lower than expected
 - Bottlenecks often in network or at backup system
 - Metadata recreation rates can be limiting factor
 - We restored a 70 TB Lustre file system with 60 million files
 - With old hardware and IBM TSM this took 3 weeks
- Users should separate permanent and scratch data
 - Backup and disaster recovery only done for permanent data

Disaster recovery – steps

- Idea: Use tool rsnapshot to create backup on other file system and change client mount point after disaster
 - rsnapshot uses rsync and hard links to create multiple copies


Note: Data created after last good rsync is lost.

Backup:

- Use rsnapshot (rsync) to transfer all data to backup file system
- 2. Use rsnapshot (rsync + hard links) to transfer new data
- 3. rsnapshot removes old copies

Disaster recovery:

- Use good rsnapshot copy and move directories to desired location
- 5. Adapt mount configuration and reboot Lustre clients

Disaster recovery – experiences, restrictions

Experiences

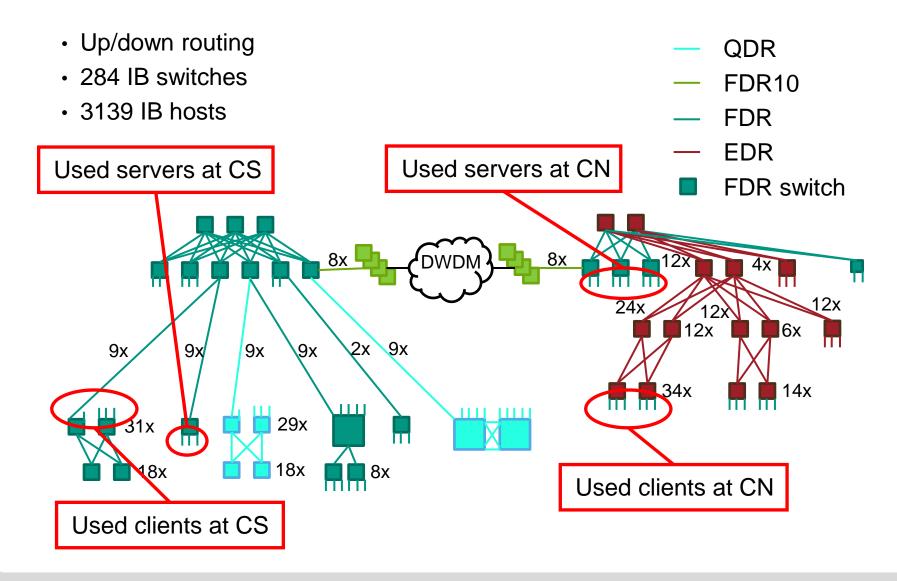
- Backup done twice per week on one client with 4 parallel processes
 - For 100 mill. files and with 5 TB snapshot data this takes 26 hours
- Disaster recovery needed for first time in January 2017
 - RAID controller on MDS delivered different data when reading twice
 - According to support reason was firmware bug
 - File system check was not able to repair, investigation took 4 days
 - After switching to backup file system everything worked as expected
 - Maintenance to switch back to newly created file system took 1 day

Restrictions

- Slow silent data corruption might pollute all backup data
 - Same problem for other backup solutions
- Recovery does not work if both file systems have critical Lustre bug

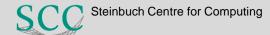
Summary

- Extraordinary HPC file system solutions at KIT
 - File systems mounted on many clusters over complex IB network
 - File systems used by diverse user community and applications
 - Lustre over 30 km IB connection works fine
 - Special disaster recovery solution
 - Own lightweight solution to provide Lustre I/O statistics
- All my talks about Lustre
 - http://www.scc.kit.edu/produkte/lustre.php
 - Check talks from LAD for more details on presented topics
- roland.laifer@kit.edu



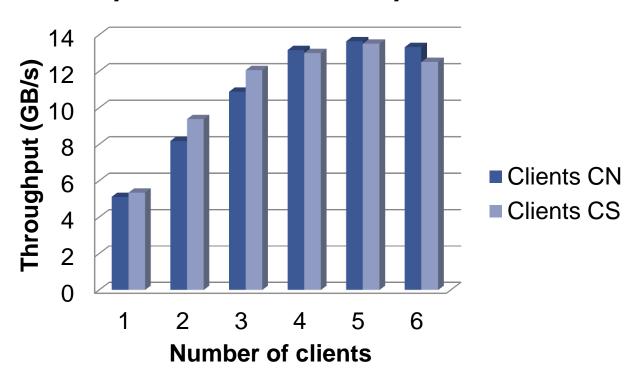
Backup slides

Performance measurement details



Performance measurement details

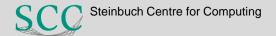
- Done while some of the systems were in production
 - Just show trends, no focus on best performance
- Write performance measured with iozone
 - Options: -+m <file_name> -i 0 -+n -r 1024k -t <thread_count> -s 8g
- Metadata performance measured with mdtest
 - Options: -u -n 10000 -i 3 -p 10 -d <lustre_dir>
- Used clients
 - CN: RH7, Mellanox OFED, FDR Connect-IB, Exascaler 2.3
 - CS: RH6, RH OFED, FDR ConnectX-3, Exascaler 2.1
- Used file systems
 - CN: EF4024 (MDT), 28 OSTs on ES7K, 6 TB disks, Exascaler 2.3
 - CS: EF3015 (MDT), 40 OSTs on SFA12K, 3 TB disks, Exasc. 2.1



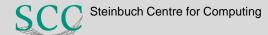
Write performance to file system at CS

Same performance from both sites

Write perf with 20 threads per client



Lightweight I/O statistics – steps in detail (1)


- 1) Enable jobstats for all file systems
 - on clients: lctl set_param jobid_var=SLURM_JOB_ID
 - Make sure clients have fix of LU-5179
 - Slurm job IDs are used by Lustre to collect I/O stats
 - On servers increase time for holding jobstats
 - E.g. to 1 hour: lctl set_param *.*.job_cleanup_interval=3600
- 2) User requests I/O statistics with Moab msub options:
 - -W lustrestats:<file system name>[,<file system name>]...
 - Optionally: -M <email address>
- On job completion Moab creates files to request I/O stats
 - File name: lustrestat-<file system name>-<cluster name>-<job ID>
 - File content: account name and optionally email address

Lightweight I/O statistics – steps in detail (2)

- 4) Perl script runs hourly on each file system
 - Uses different config file for each file system
 - Defines names of request files and of batch system servers
 - Allows to collect request files from different clusters
 - Defines which servers are used for the file system
 - Transfers files from batch systems and deletes remote files
 - Uses rsync and rrsync as restricted ssh command for login with key
 - Reads data including job IDs and account name
 - If not specified asks directory service to get email address of account
 - Collects and summarizes jobstats from all servers
 - For each job sends an email
 - Email is good since jobstats are collected asynchronously

