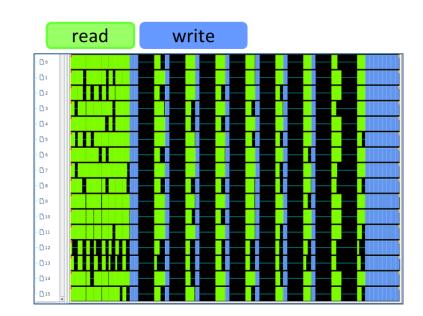


PIOM-PX: A Framework for Modeling the I/O Behavior of Parallel Scientific Applications

Authors: <u>Pilar Gomez-Sanchez</u>, Sandra Mendez, Dolores Rexachs, Emilio Luque

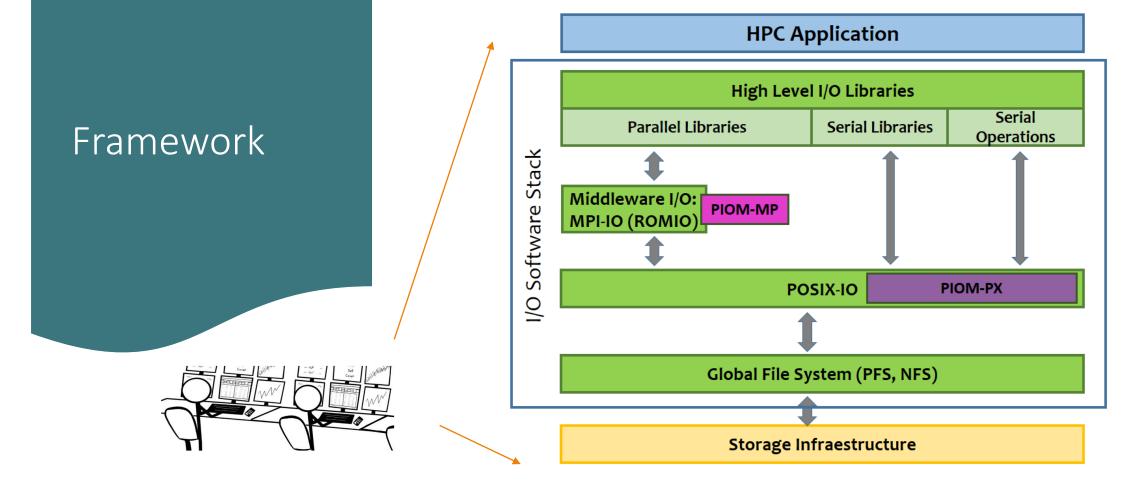
June 2017



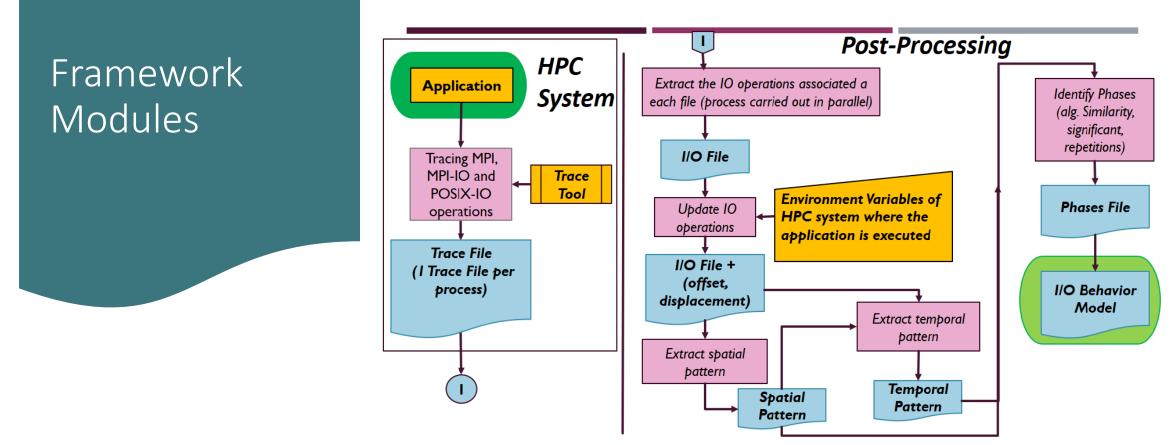
Introduction

- Parallel applications produce a **huge amount of data** that represents a challenge for modern I/O systems.
- Depending on the I/O behavior of parallel applications and the processing performed in each layer of the I/O software stack, the performance obtained can differ significantly from the maximum performance expected.
- Understanding I/O behavior **is fundamental** to evaluate the I/O performance of the HPC applications.

Introduction


- Most parallel application have a **repetitive behavior** when accessing a specific file.
- Due to the high cost of I/O operations, is normally intended to **reduce the number of accesses**, resulting in sporadic systematics bursts of I/O operations.
- The knowledge of I/O behavior allows us to determine the I/O requirements of the application and to evaluate their impact on different I/O configurations.

Objectives


Define an I/O behavior model based on I/O Phase at the POSIX-IO level.

- Select the **main parameters** at **POSIX-IO level** to have a determined **portable** model.
- Define a **design framework** , **PIOM-PX**.

We classify the application features as parameters for PIOM-PX into three levels: application, file, and phase.

PIOM-PX was integrated with PIOM-MP, which allows us to trace I/O activities at MPI and POSIX-IO level.

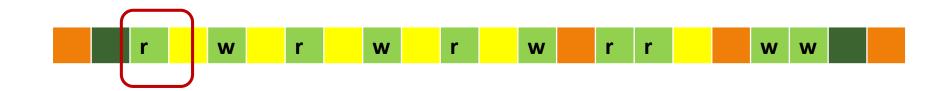
Trace module:

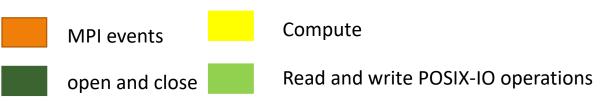
- Analyzed MPI Applications.
- A trace file is generated for each MPI process.
- Intercept the MPI events and the most renowned POSIX-IO operations.

Post-processing Framework Post-Processing HPC Modules Extract the IO operations associated a Application **Identify Phases** System each file (process carried out in parallel) (alg. Similarity, significant, repetitions) I/O File Tracing MPI, MPI-IO and Trace POSIX-IO Tool **Environment Variables of** Update IO Phases File operations HPC system where the operations application is executed **Trace File** I/O File + (| Trace File per (offset, I/O Behavior process) displacement) Model Extract temporal þattern Extract spatial battern Temporal Spatial Pattern Pattern

- Extracting I/O operations : extract the I/O operations per file opened by the application of each trace file into a new file.
- Updating I/O operations: detect when the offset and request size (rs) informed require evaluating another operation to obtain the request or offset.

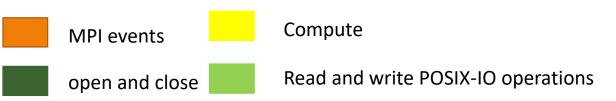
• Analyzing 1 File: (Example 1 file x process)


file_id=1; Ph_np=1



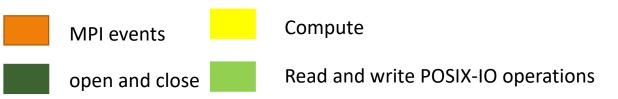
• Analyzing 1 File: (Example 1 file x process)

file_id=1; Ph_np=1

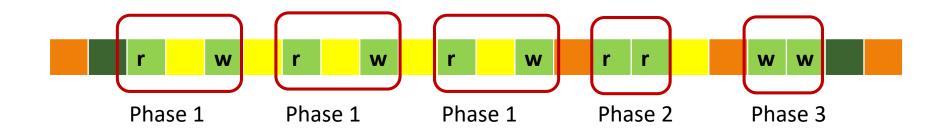


• Analyzing 1 File: (Example 1 file x process)

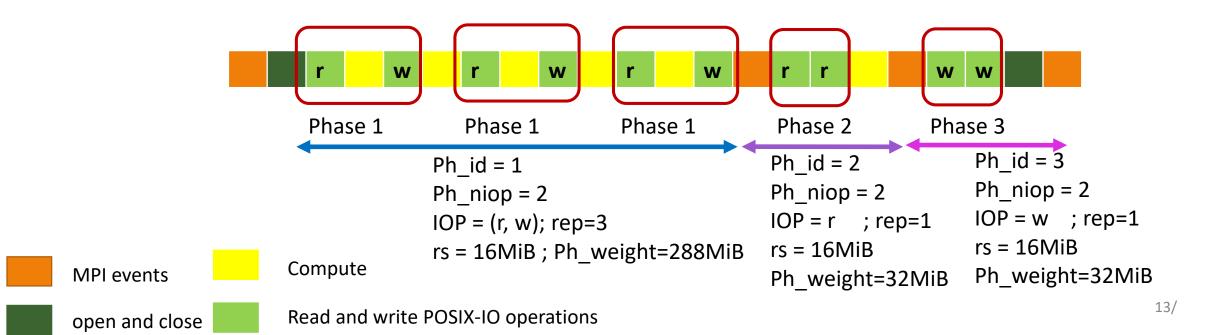
file_id=1; Ph_np=1

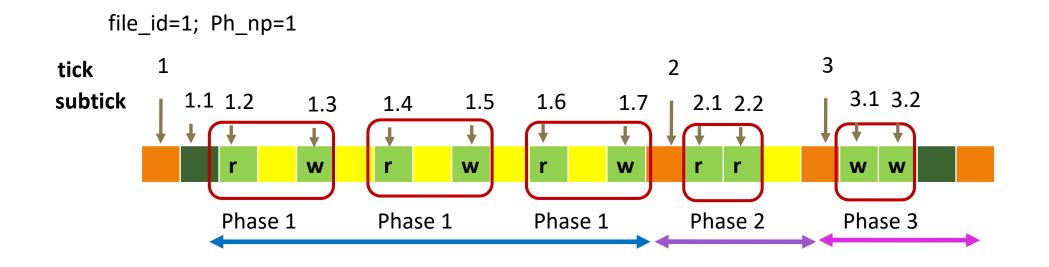


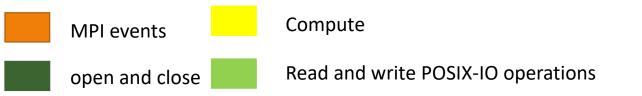
• Analyzing 1 File: (Example 1 file x process)


file_id=1; Ph_np=1

• Analyzing 1 File: (Example 1 file x process)


file_id=1; Ph_np=1




• Analyzing 1 File: extracting the Spatial pattern.

file_id=1; Ph_np=1

• Analyzing 1 File: extracting the Temporal Pattern.

Experimental Case in different HPC systems

• 1 File per Process using POSIX interface.

IOR -a POSIX -s 1 -b 8m -t 1m -F

• 1 File per Process using MPI-IO interface.

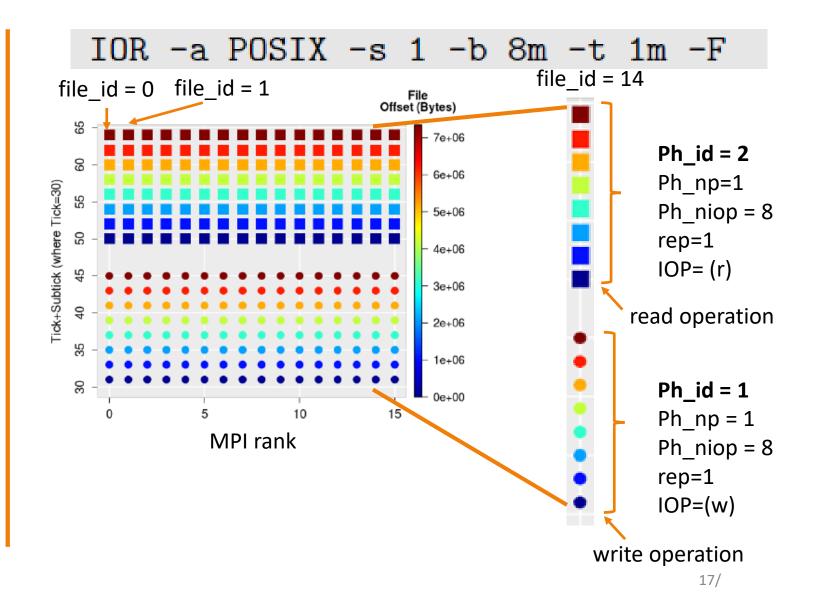
IOR -a MPIIO -s 1 -b 8m -t 1m -F

• A single shared file using collective buffering technique in automatic mode for a strided pattern.

IOR -c -a MPIIO -s 16 -b 512k -t 512k

• A single shared file using collective buffering technique in enable mode for a strided pattern.

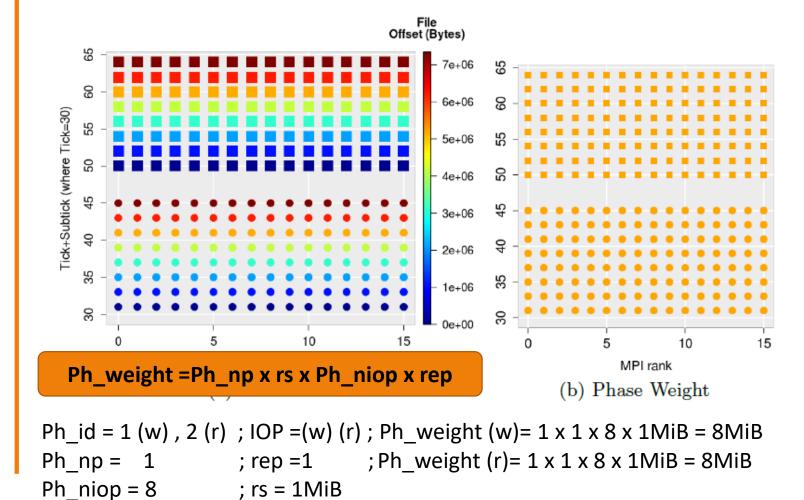
```
romio_cb_read = enable
romio_cb_write = enable
IOR -c -a MPIIO -s 16 -b 512k -t 512k
```


1 File per Process using POSIX interface

Identifier	Values
app_np	16
app_nfiles	16
app_st	128 MiB
File	
file_name	testFile <idprocess></idprocess>
file_size	8 MiB
file_accessmode	Seq
file_fileaccesstype	W/R
file_accesstype	1Fx1Proc
file_nphase	2
file_np	1

IOR -a POSIX -s 1 -b 8m -t 1m -F

1 File per Process using POSIX interface


Identifier	Values
app_np	16
app_nfiles	16
app_st	128 MiB
File	
file_name	testFile <idprocess></idprocess>
file_size	8 MiB
file_accessmode	Seq
file_fileaccesstype	W/R
file_accesstype	1Fx1Proc
file_nphase	2
file_np	1

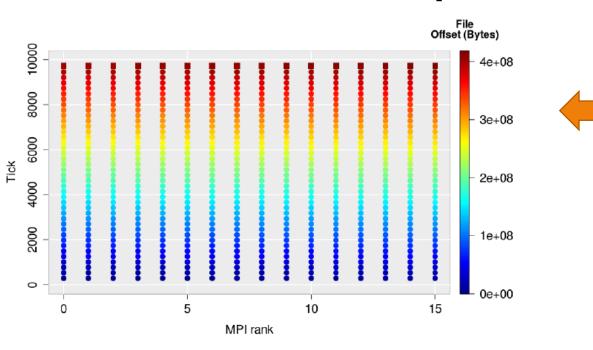
1 File per Process using POSIX interface

Identifier	Values
app_np	16
app_nfiles	16
app_st	128 MiB
File	
file_name	testFile <idprocess></idprocess>
file_size	8 MiB
file_accessmode	Seq
file_fileaccesstype	W/R
file_accesstype	1Fx1Proc
file_nphase	2
file_np	1

IOR -a POSIX -s 1 -b 8m -t 1m -F

Experimental Results

Environment

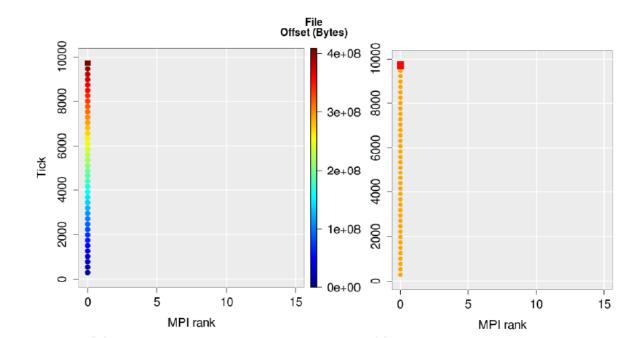

Components	${ m Finisterrae2}$	SuperMUC
Compute Nodes	306	9216
CPU cores (per node)	24	16
RAM Memory	128 GB	32 GB
Local Filesystem	ext4	ext3
Global Filesystem (GFS)	NFS	NFS
Capacity of GFS	1.1TB	10x564x10TB
Global Filesystem (PFS)	Lustre	GPFS
Capacity of PFS	695 TB	12PB
Data servers Metadata Servers	4 OSS and 12 OSTs 1	80 NSD
Stripe Size	1MiB	8MiB
Interconnection	IB $FDR@56Gbps$	IB FDR10

Applications BT-IO Full, Class: A, B and C

PIOM-PX parameters for the BT-IO benchmark subtype FULL

Identifier	Class A	Class B	Class C
app_np	16	16	36
app_nfiles	1	1	1
app_st	400 MiB	1.6 GiB	6.4 GiB
File			
file_name	btio.full.out	btio.full.out	btio.full.out
file_size	400 MiB	1.6 GiB	6.4 GiB
file_accessmode	Strided	Strided	Strided
file_fileaccesstype	W/R	W/R	W/R
file_accesstype	Shared	Shared	Shared
file_nphase	41	41	41
file_np at MPI-IO level	16	16	36
file_np at POSIX-IO level	1	1	3

Experimental Results


File offset and Phase Weight at POSIX-IO using PIOM-PX

Write Weight Phase	Read Weight Phase
10485760 bytes	10485760 x 40 bytes

File offset at MPI level by using PIOM-MP

Weight Phase: 1 Write operation 655360 bytes

Write Weight Phase	Read Weight Phase
655360 bytes x 16 bytes	655360 bytes x 16 x 40

Conclusions

- Our approach allows us to obtain the application's I/O behavior at phase level.
- We can observe different I/O behavior at different I/O level
- I/O behavior helps to understand the relationship between the application and the I/O system.
- Our framework makes it possible to have accurate information over the I/O phases.

PIOM-PX: A Framework for Modeling the I/O Behavior of Parallel Scientific Applications

Pilar Gomez Sanchez pilar.gomez@uab.es

http://grupsderecerca.uab.cat/hpc4eas

June 2017

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften

